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Chapter 1

Indroduction

In 1974, Wilson proposed the Lagrangian formulation of LGT [1] where the gauge field the-

ory is discretized on the D-dimensional space-time lattice. In 1975, Kogut and Susskind

derived a lattice Hamiltonian [2] in which only the (d − 1)-dimensional space is dis-

cretized while the time variable remains continuous. Theoretically, the two formulations

are equivalent in the continuum limit. However, they both involve spurious gauge degrees

of freedom. In this thesis we study manifestly gauge invariant loop approach to lattice

gauge theory (see chapter 3 and 4) by reformulating Kogut Sussking Hamiltonian [2] in

terms of the prepotential operators. These prepotential operators are simply harmonic

oscillators belonging to the fundamental representations of the gauge group.

As mentioned above, the main idea of the lattice approach to gauge theories [3–7] is

to incorporate a non-perturbative cut-off in the theory. This lattice cut off is introduced

by considering finite lattice spacing a. The quantum theory which describes the physical

world is defined as the limit of a regulated theory with a short distance a (ultraviolet)

cut off and a volume L (infrared) cutoff.

Quantum Field Theory = lim
a→0,L→∞

(Lattice Theory)a,L (1.1)

Continuum theories are approached from the lattice theory by tuning a set of relevant

parameters [8] to reach the limit where the lattice correlation length diverges. Note that,

while working on lattice, the variables such as lattice mass (mL) or lattice correlation

lengths (ξL) are usually taken in lattice units and are dimensionless, i.e,

mL = mphys × a ⇒ ξL ≈
1

mL

≡ 1

mphys × a
; (1.2)

1



Chapter 1. Introduction 2

where, mphys is the physical mass. It is clear from the above expression, that

• both mL and ξL are dimensionless,

• since the physical mass mphys is always finite, as the lattice spacing a approaches

zero, the lattice correlation length must diverge.

Thus the continuum limit of a lattice gauge theory is reached only when the theory

has diverging correlation lengths. In a statistical mechanical theory, the divergence of

correlation length is a signature of second order phase transition. In renormalization group

analysis of lattice gauge theory [8], the coupling acts as a parameter which determines

the cutoff. Hence to get a continuum limit of a field theory defined with a lattice cutoff,

one needs to find the points in the coupling parameter space where the corresponding

statistical model reaches the critical point. In terms of the coupling in lattice gauge

theories, the continuum limit is achieved when the bare coupling approaches zero [3]. To

realize this let us consider the beta function, determining the cut-off dependence of the

coupling, defined as,

β(g0) = a
d

da
g0(a), (1.3)

where g0 is the bare coupling of the theory and a is lattice spacing. Under renormaliza-

tion group flow, the coupling and lattice spacing are not two independent parameter. The

continuum limit is reached when g0 approaches a fixed point gF in the coupling parameter

space. Hence it implies that β(gF ) = 0 in the continuum limit. The perturbative renor-

malization group analysis shows that at the strong coupling limit of the theory β(gF ) does

not tend to zero. Hence the strong coupling limit of the theory is not a fixed point and

hence not the continuum limit. However, in the weak coupling limit of the theory, the

perturbative beta function in 4-dimensions acquires the form:

β(g0) = β0g
3
0 + β1g

5
0 +O(g7

0) (1.4)

which clearly vanishes at vanishing coupling. The one loop and two loop contribution to

beta function for SU(N) gauge theory with Nf fermionic species is [3]:

β0 =
1

16π2

(
11N

3
− 2Nf

3

)
β1 =

(
1

16π2

)2(
34N2

3
− 10NNf

3
− Nf (N

2 − 1)

N

)
(1.5)
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Now, integrating beta function, one obtains the coupling as:

1

g2
0

= β0 log

(
1

a2Λ2
0

)
+
β1

β0

log

(
log

(
1

a2Λ2
0

)
+O(g2

0)

)
, (1.6)

or equivalently,

a = Λ−1
0 (g2

0β0)
β1
2β2

0 exp

(
− 1

2β0g2
0

)
(1 +O(g2

0)). (1.7)

where, Λ0 is the integration constant. Now, clearly we get that at weak coupling limit

ξL(≈ 1
mphys×a

) diverges as expected in continuum limit.

We start with the introduction to Hamiltonian formulation in the next section.

1.1 The Hamiltonian approach

The Hamiltonian formulation of lattice gauge theory is intuitively appealing as one di-

rectly deals with the construction and study of the physical gauge invariant Hilbert space

in terms of the fundamental operators of the theory. In the Hamiltonian approach one

discretizes the spatial lattice and leaves the time variable continuous. This approach was

first taken by Kogut and Susskind in [2]. Till date the major trends in the researches

in the field of lattice gauge theories have mostly followed the Euclidean approach. This

is because of the fact that Euclidean path-integral formalism is easily implementable for

numerical simulations. In this formalism Monte-Carlo studies of lattice gauge theories

yield numbers to be directly checked with particle data. The drawback of the Monte

Carlo technique is that it is entirely numerical and one has no way of getting a feeling for

what is essential and what is superfluous. On the other hand, the Hamiltonian approach,

in principle, allows us to directly compute the physical spectrum non-perturbatively by

diagonalizing the lattice Hamiltonian in the gauge invariant Hilbert space. Therefore,

the Hamiltonian approach enables us to compute the energy levels and explicitly con-

struct the corresponding physical states in terms of the basic canonical operators of the

theory. However, the main problem with the Hamiltonian approach is that the above

diagonalization procedure even for pure gauge theory and on a finite lattice involves a se-

vere truncation of the infinite dimensional gauge invariant physical Hilbert space to some

finite dimension. These truncations are done under various approximation schemes. The
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simplest and the oldest approximation scheme is the strong coupling expansion [2, 6, 9].

In the strong coupling limit (g2 →∞) all loop states are eigenstates of the free Hamilto-

nian. The eigenvalues or the energies of these loop states, in the units of g2, are directly

proportional to their lengths and fluxes they carry. Therefore the strong coupling expan-

sion allows us to compute the low energy spectrum by truncating the infinite dimensional

physical Hilbert space to a finite dimensional Hilbert space spanned by loop states of

small lengths carrying small fluxes. However, these results are completely unphysical be-

cause the continuum limit of lattice gauge theory lies at the other extreme weak coupling

(g2 → 0) end (1.7). The other popular variational [10] methods in the Hamiltonian lattice

gauge theory involve trial ground state wavefunctions and hence again sample a very small

part of the full gauge invariant Hilbert space. The Hamiltonian approach has also been

exploited to develop other non- perturbative methods such as t-expansions [11], plaque-

tte expansion [12] and coupled cluster method [13,14]. Monte Carlo techniques have also

been developed to study the spectrum of the lattice gauge theory Hamiltonian [15]. There

are also renormalization group improved approaches where the original Kogut-Susskind

Hamiltonian [16] is modified by including distant lattice sites/links interactions in order

to minimize the discretization error and to get closer to the continuum limit. Again all

these methods, though non-perturbative, chop off the gauge invariant Hilbert space as in

the case of strong coupling expansion. Therefore, it is an important problem to compute

and characterize all possible gauge invariant states which are mutually independent. In

this thesis we define SU(2) prepotential operators (see chapter 2) which enable us to ex-

plicitly construct an orthonormal and complete gauge invariant loop basis (see chapter

3). We also compute the matrix elements of the Hamiltonian in this basis (chapter 4).

We generalize the ideas to SU(N) in chapter 5 and 6.

1.2 Loop Formulation

Like any continuum gauge theory, LGT also suffers hugely from irrelevant gauge degrees

of freedom. Hence it is always desirable to remove these irrelevant or unphysical degrees

of freedom from the theory. Note that, within the Hamiltonian framework, where one is

interested in the Hilbert space of the theory, the gauge redundancy increases its dimension
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considerably. On lattice, each link of the lattice carries a SU(N) link operator. However,

there exists SU(N) gauge invariance at each lattice site. Hence, the actual dimension

of the physical Hilbert space in SU(N) gauge theory defined on lattice, is the dimension

of the quotient space ⊗linksSU(N)/ ⊗sites SU(N). Considering a d dimensional lattice

with periodic boundary condition the dimension of physical Hilbert space at each lattice

site is exactly (N2 − 1)(d − 1), where N denotes the SU(N) group. We again address

this issue quantitatively in section 3.1. Now, there are two ways to proceed with the

Hamiltonian formulation like in any gauge theory. Either one can make a suitable gauge

choice (gauge fixing) to cut down the gauge degrees of freedom or work with only gauge

invariant or physical degrees of freedom. In pure gauge theries, the physical or gauge

invariant variables are the Wilson loops. These Wilson loops are basically the parallel

transport or holonomy of gauge field around a closed path in space. Infact, in the simplest

case of electrodynamics this notion of holonomies existed in terms of electric fields or flux

lines since the time of Faraday. In the non-abelian case, in order to get gauge invariant

variables, holonomies are taken around closed paths and finally the trace is taken.

In lattice gauge theories, these gauge invariant Wilson loop operators, constructed out

of holonomies, acting on the strong coupling vacuum creates the loop states which span

the physical Hilbert space of the theory. Infact, lattice formulation is tailor made for loop

formulation of gauge theories. This is because in lattice formulation of gauge theories

the basic variables are the link operators or equivalently holonomies and not the gluon

fields like in the continuum. The lattice cut-off also provides a natural cut-off for the

loop states carrying discrete “electric fluxes”. Infact, the most convenient description of

loop formulation of lattice gauge theories is in terms of dual and electric field quantum

numbers (see eqn. (3.13) and (3.28)). This dual formulation of lattice gauge theories

has been a subject of study for very long time [17–19]. Kolawa [18], Bruggmann [20],

Gambini [21, 22] and many others [13, 14, 23, 24] have used the truncated dual basis to

study the spectrum of SU(2) and higher SU(N) lattice gauge theories.

The loop studies of Yang Mills theory also inspired people working in gravity to utilize

loop approach. This was made possible by Ashtekars introduction of gauge theory like

variables for canonical gravity, namely, a connection and its canonically conjugate “elec-

tric field” with internal SU(2) degrees of freedom [25]. This approach to gauge theory
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eventually lead to a new non- perturbative quantization of canonical gravity [26] known as

loop quantum gravity. Again the dual approach to loop quantum gravity is the spin-foam

approach, where the Hilbert space of loop quantum gravity theories consists of polymer-

like excitations supported on graphs (spin network states) [27]. This spin foam approach

is again very much close to lattice gauge theory as the lattice is replaced by arbitrary

graphs. This again has renewed interests of reformulating lattice gauge theories in terms

of loops [23,28–30] in recent years.

1.3 The Mandelstam Constraints

The most serious problem associated with the loop formulation of gauge theories is that

set of all possible loop states form a highly over-complete basis in the gauge invariant

Hilbert space. This over-completeness is simply because all loop states are not linearly

independent. This overcompleteness of the full loop Hilbert space implies constraints

which are known as Mandelstam constraints [31]. They reflect the structure of the gauge

group in the form of a set of relations between the loop states of the theory. More precisely,

the Mandelstam constraints allow us to express products of Wilson loops in terms of the

sum of the products of smaller number of loops implying that all the loops in the theory

are not mutually independent (see chapter 3 for quantitative discussion). These identities

were first introduced by Mandelstam for the gauge group O(3) [31]. Extension to GL(N)

was achieved by Giles [32]. These identities have also been used for specific choices of

gauge groups for researchers in the field of Loop Quantum Gravity [21,28].

The Mandelstam constraints have been difficult to solve as they involve arbitrarily

large number of non-local loop states of all shapes and sizes (see chapter 3). On the other

hand, the solutions of the the Mandelstam constraints are of significance not only for

writing the non-abelian gauge theories without any spurious loop degrees of freedom (see

chapter 4) but also for computing the Hamiltonian spectrun in the weak coupling limit.

This is because unlike strong couling limit, near the weak coupling or continuum (g2 → 0)

limit loop states of arbitrary large sizes and fluxes will become relevant [18]. In fact, if

we are only interested in the strong coupling limit of lattice gauge theory, this problem

of over-completeness and the problem of solving the Mandelstam constraints is simple.
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This is because for the low energy spectrum the loop states which are large and/or carry

large fluxes can be safely ignored in g0 →∞ limit. As a result, the relevant loop Hilbert

space in the strong coupling limit consists of very few states and is of finite dimension.

The Mandelstam constraints can be easily solved by constructing an orthonormal basis

using Gram-Schmidt procedure as the number of loop states are finite. This is the reason

why the Mandelstam constraints are not even mentioned in the huge amount of literature

dealing with the strong coupling expansion. However, in the continuum g0 → 0 limit,

the number of loops contributing to the spectrum grows and solving the Mandelstam

constraints become an important problem. Infact, as stated by Gambini and Pullin in [21],

(Chapter 12, pp. 303304): “The proliferation of loops when one considers larger lattices

and higher dimensions completely washes out the advantages provided by the (loop)

formalism”.

In this thesis we define prepotential formulation of pure lattice gauge theories and

show that all Mandelstam constraints can be locally solved using the prepotential opera-

tor. Further, we systematically develop ideas and techniques to reformulate lattice gauge

theories in loop space without any spurious loop degrees of freedom.

1.4 Prepotential Formulation

The prepotential operators are the Schwinger bosons or harmonic oscillator n-plets in the

fundamental represenations of the SU(N) gauge group [29,30,33–36]. The SU(N) electric

fields, SU(N) link operators are explicitly constructed in terms of these prepotential op-

erators. This prepotential formalism is shown to be invariant under SU(N) × U(1)N−1

gauge group. As the prepotential operators belong to the fundamental representations of

the gauge group they transform exactly like matter fields. Thus in the prepotential for-

malism gauge and matter sectors of the theory are treated on the same footing. Further,

the simple transformation property of prepotentials enables us to solve the non-abelian

Gauss law locally at each lattice site. Further, using some ideas from group representation

theory we write down all possible mutually orthonormal local solutions of the Gauss law.

As these solutions are mutually independent they also solve the Mandelstam constraints.

Having solved all the constraints, we compute the loop dynamics within the orthonormal
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loop basis locally site by site. The final results at different lattice site are then glued

together through the Abelian gauge invariance.

To illustrate the scheme more clearly, we give flow-chart in figure 1.1.

Figure 1.1: The Prepotential Hamiltonian Formulation

Overview of the thesis

The outline of the thesis as as follows. We start with the Hamiltonian formulation of lattice

gauge theories in chapter 2. In this chapter we give a brief review and fix the notations for

the thesis of Kogut-Susskind formulation of Hamiltonian lattice gauge theory. We discuss
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the Gauss law constraint as well as the electric field constraint. The next part of this

chapter contains a new and equivalent formulation of Hamiltonian lattice gauge theories in

terms of Prepotentials [29]. We define and construct the prepotential operators, construct

the Kogut-Sussskind variables in terms of these. Rewrite the constraints and see their

implications.

In chapter 3 we discuss the loop approach to lattice gauge theories. The gauge invari-

ant operators in gauge theory are the Wilson loop operators. These Wilson loops acting

on the strong coupling vacuum creates the states in the physical Hilbert space of the

gauge theory. These states are highly non local due to arbitrary shapes and sizes of the

loops. Moreover they form a much bigger set of basis vectors than the required dimension

of physical Hilbert space. This is because of the fact that these Wilson loops are mutually

dependent by a set of Mandelstam constraint. The present available literature does not

contain a complete discussions on Mandelstam constrains. In this chapter we review the

Mandelstam constraints discussed by Migdal in [37] so that we can compare this with the

prepotential approach to loop formulation. We find that in terms of prepotentials [29] it

is possible to write all the operators invariant under non-abelian gauge transformations

locally at each site of the lattice. Being local they form a finite dimensional but overcom-

plete basis at each site. It is not at all difficult to relate these local loop operators in terms

of the Mandelstam constraint between them. This local form of Mandelstam constraint

is solvable leading to the exact orthonormal basis of the physical Hilbert space of SU(2)

lattice gauge theory. Next we consider the dynamical issues in chapter 4. In this basis

the dynamics is goverened by 3nj Wigner symbols.

In the next section, i.e in chapter 5 we generalize the prepotential formulation to gauge

group SU(3). As stated earlier, the generalization from SU(2) to SU(3) is not at all trivial

as the SU(3) group representation theoretic complications arise for SU(3). The origin of

such complications is the multiplicity problem. We first solve these multiplicity problem

by defining and constructing a new set of Schwinger bosons or irreducible schwinger bosons

which makes SU(3) representations as simple as SU(2). We exploit this set of irreducible

Schwinger bosons to contruct SU(3) irreducible prepotentials. In terms of the SU(3)

irreducible prepotentials the SU(3) gauge invariant loop states can be constructed locally.

We have also obtained all the Mandelstam constrain in their local form. Furthermore
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the SU(3) irreducible Schwinger boson construction has more applications in the context

of SU(3) representations. We also briefly discuss two such applications namely in the

construction of SU(3) coherent states and in the calculation of SU(3) Clebsch-Gordon

coefficients in the appendices.

In chapter 6 we further generalize the prepotential formulation for arbitrary SU(N)

group and reproduce all the results previously obtained for SU(3) in particular. Chapter

7 of this thesis contains explicit calculation of the spectrum of lattice gauge theory for

a smaller lattice consisting of only four sites. Finally we discuss the future scope of the

formulation in eighth and the final chapter.



Chapter 2

Hamiltonian Formulation of Lattice Gauge Theories

and Prepotentials

In this chapter we discuss the reformulation of the Kogut-Susskind formulation of Hamil-

tonian Lattice Gauge Theory in terms of prepotential operators [29, 30]. For the sake of

simplicity we start with the prepotential formulation of SU(2) lattice gauge theory which

is the simplest non abelian gauge group. The first part of this chapter consists of the no-

tations and definitions regarding the Kogut-Susskind Hamiltonian formulation for SU(N)

lattice gauge theory that we follow in the course of this thesis. We set our notation in

terms of the conventional Kogut-Susskind variables, color electric field and link operators.

We also describe the Gauss law constraints. In the later part we define and construct the

prepotential operators through the non-abelian eleectric fields. We then compute the

SU(2) link operators in terms of the prepotentials. We also study the gauge invariance of

the theory written in terms of prepotentials.

2.1 Kogut-Susskind Hamiltonian formulation

In this particular formulation the space is taken to be discretized whereas the time remains

continuous. The Hamiltonian of SU(N) lattice gauge theory is [2]:

H =
∑
n,i

N2−1∑
a=1

Ea(n, i)Ea(n, i) +K
∑

�

Tr
(
U� + U †�

)
(2.1)

with,

U� = U(n, i)U(n+ i, j)U †(n+ j, i)U †(n, j),

11
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where K is the coupling constant, a(= 1, 2, · · · , (N2−1)) is the color index. For a d dimen-

sional square lattice, each link (n, i), originating from nth site in the ith direction carries a

link operator U(n, i) which connects the left and right electric fields Ea
L(n, i), Ea

R(n+ i, i)

situated at both the ends, i.e nth and (n + i)th point on the lattice. The link operator is

basically a SU(N) symmetric top, whose configuration (i.e the rotation matrix from space

fixed to body fixed frame) is given by the operator valued (N ×N) SU(N) matrix U(n, i).

The quantization rules [2] of this system is as follows:

[Ea
L(n, i), Uα

β(n, i)] = − (T aU(n, i))α β,[
Ea
R(n+ i, i), Uα

β (n, i)
]

= (U(n, i)T a)α β. (2.2)

where, T a are the SU(N) generators in the fundamental representation satisfying [T a, T b] =

if abcTc, where, f abc are the SU(N) structure constants. EL(n, i) and ER(n + i, i) being

the generators of left and the right gauge transformations are not independent. The right

generators Ea
R(n+ i, i) are the parallel transport of the left generator Ea

L(n, i) on the link

(n, i):

ER(n+ i, i) = −U †(n, i)EL(n, i)U(n, i). (2.3)

In (2.3), ER(n + i, i) ≡
∑

aE
a
R(n + i, i)T a and EL(n, i) ≡

∑
aE

a
L(n, i)T a. The left and

the right electric fields on every link, being the SU(N) generators, satisfy:

[Ea
L(n, i), Eb

L(n, i)] = ifabcE
c
L(n, i), [Ea

R(n, i), Eb
R(n, i)] = ifabcE

c
R(n, i). (2.4)

Further, using (2.3), it is easy to show that Ea
L and Ea

R commute amongst themselves:[
Ea
L(n, i), Eb

R(m, j)
]

= 0. (2.5)

and therefore mutually independent. By construction (i.e (2.3)) on each link they always

satisfy the constraints:

N2−1∑
a=1

Ea(n, i)Ea(n, i) ≡
N2−1∑
a=1

Ea
L(n, i)Ea

L(n, i) =
N2−1∑
a=1

Ea
R(n+ i, i)Ea

R(n+ i, i). (2.6)

Note that, the Hamiltonian in (2.1) involves the squares of either left or the right electric

fields. Under gauge transformation (Λ(n) at site n) the link operator and left & right
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electric fields transform as:

U(n, i)→ Λ(n)U(n, i)Λ†(n+ i),

EL(n, i)→ Λ(n)EL(n, i)Λ†(n), ER(n+ i, i)→ Λ(n+ i)ER(n+ i, i)Λ†(n+ i). (2.7)

The Hamiltonian (2.1) and the basic commutation relations (2.2) are invariant under the

SU(N) gauge transformations (2.7). From (2.7), the SU(N) Gauss law constraint at every

lattice site n is

Ga(n) =
d∑
i=1

(
Ea
L(n, i) + Ea

R(n, i)
)

= 0,∀n and for a = 1, . . . N2 − 1. (2.8)

It is convenient to define the left and right strong coupling vacuum state |0〉L and |0〉R
on every link which are annihilated by their corresponding electric fields:

Ea
L(n, i)|0, (n, i)〉L = 0, Ea

R(n+ i, i)|0, (n+ i, i)〉R = 0, ∀ links (n, i). (2.9)

We will denote the vacuum state on a link by |0〉 ≡ |0, (n, i)〉L⊗ |0, (n, i)〉R ≡ |0〉L⊗ |0〉R,

suppressing all the link as well as L, R indices. The quantization rules (2.2) show that the

link operators Uα
β(n, i) acting on the strong coupling vacuum (2.9) create SU(N) fluxes

on the links. As an example, using (2.2):

E2
L(n, i)

(
Uα

β|0〉
)

= E2
R(n+ i, i)

(
Uα

β|0〉
)

=
N2−1∑
a=1

Ea
L [Ea

L, U
α
β] |0〉

= −
N2−1∑
a=1

[Ea
L, (−T aU)αβ] |0〉 = (T a)αγ(T

a)γδU
δ
β|0〉

=

(
1

2
δαδδ

γ
γ −

1

2N
δαγδ

γ
δ

)
U δ

β|0〉 =
1

2N

(
N2 − 1

) (
Uα

β|0〉
)
. (2.10)

The higher SU(N) irreducible flux eigenstates of E2
L or E2

R on a link are constructed by

considering the states Uα1
β1U

α2
β2 · · ·Uα1

β1|0〉 and symmetrizing the α and therefore also

β indices according to certain SU(N) Young tableau.

2.2 Prepotential Formulation

In this section we define SU(2) prepotential operators as an alternate variables of the

theory and reformulate the Hamiltonian as well as the associated constraints in terms of
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these. We will generalize these ideas and techniques to higher rank SU(3) and SU(N)(N >

3) groups later in chapter 5 and 6 respectively.

2.2.1 Definition and Construction

As discussed in previous section, two electric fields are associated with each link of the

lattice. We define SU(2) prepotential operators a†(n, i;L) and a†(n, i;R) associated with

left and right end of the link (n, i). Using the Schwinger boson construction [33] of the

angular momentum algebra, the left and the right electric fields on a link (n, i) can be

written as:

Left electric fields: Ea
L(n, i) ≡ a†(n, i;L)

σa

2
a(n, i;L), (2.11)

Right electric fields: Ea
R(n+ i, i) ≡ a†(n+ i, i;R)

σa

2
a(n+ i, i;R).

In (2.11), aα(n, i; l) and a†α(n, i; l) are the doublets of harmonic oscillator creation and

annihilation operators with l = L,R, α = 1, 2 satisfying the following algebra:[
aα(n, i; l), a†β(n′, i′; l′)

]
= δnn′δii′δll′δαβ

[aα(n, i; l), aβ(n′, i′; l′)] =
[
a†α(n, i; l), a†β(n′, i′; l′)

]
= 0 (2.12)

Like Ea
L(n, i) and Ea

R(n+i, i), the locations of a(n, i, L), a†(n, i, L) and a(n+i, i, R), a†(n+

i, i, R) are on the left and the right of the link (n, i). For notational convenience we

suppress the link indices and denote a†(n, i, L) and a†(n + i, i, R) by a†(L) and a†(R)

respectively. This is clearly illustrated in Figure 2.1. Note that the relations (2.11) imply

that the strong coupling vacuum (2.9) is the harmonic oscillator vacuum. Under SU(2)

gauge transformation, the prepotential harmonic oscillators transform as SU(2) doublets:

a†α(L)→ a†β(L)
(
Λ†L
)β

α, a†α(R)→ a†β(R)
(
Λ†R
)β

α

aα(L)→
(
ΛL

)α
β a

β(L), aα(R)→
(
ΛR

)α
β a

β(R). (2.13)

One can also define ã†α = εαβa†β and ãα = εαβa
β which under SU(2) transformation

transform as aα and a†α respectively. Here, εαβ is a completely antisymmetric tensor

(ε11 = ε22 = 0, ε12 = −ε21 = 1).
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Figure 2.1: The left and right electric fields and the corresponding prepotentials in SU(2)

lattice gauge theory. We have denoted a†(n, i, L) and a†(n + i, i, R) by a†(L) and a†(R)

respectively. The unoriented abelian flux line connecting them represents the U(1) Gauss

law (2.19) constraint.

In addition to the elecric fields, each of the links also carry a link variable Uα
β(n, i). For

notational simplicity from now on we will remove the link index (n, i) while considering

a single link at a time. The basic SU(2) flux states on each link are created by the

action of link variables on the strong coupling vacuum. The flux state must carry a SU(2)

representation and is characterized by the SU(2)quantum numbers, i.e |j,m〉. As discussed

in previous section, the link variable transforms by both the gauge transformation seating

at its both ends. In terms of link operators, Uα
β on a link l the basic SU(2) flux states

on the link l can be constructed as:

|jL(l),mL(l)〉 ⊗ |jR(l)mR(l)〉 = N
(
Uα1

β1U
α2
β2 ..U

α2j
β2j

+ ...
)

︸ ︷︷ ︸
(2j)! permutations

|0〉. (2.14)

In (2.14), N is the normalization factor. jL(l) = jR(l) ≡ j(l) because both the left and

right states are created by action of the same Uα
β where, α is the left index and β is

the right index. mL =
∑2j

i=1 αi and mR =
∑2j

i=1 βi with αi, βi = ±1
2
. The (2j)! terms

in (2.14) are required to implement the symmetries of SU(2) Young tableau in the left

(α1α2 · · ·α2j) as well as the right (β1β2 · · · β2j) indices.

Now, in terms of prepotentials, which are defined at each end of the links; so we can

create left and right states by the left and right prepotentials in the following way:

|j(l),mL(l),mR(l)〉 = |j(l),mL(l)〉L ⊗ |j(l),mR(l)〉R, (2.15)
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where,

|j(l),mL(l)〉L = NLa
†
α1

(L)a†α2
(L) · · · a†αn(L)|0〉L ≡ L̂α1α2···αn|0〉L,

|j(l),mR(l)〉R = NRa
†
β1

(R)a†β2
(R) · · · a†βn(R)|0〉R ≡ R̂β1β2···βn|0〉R. (2.16)

In (2.16), NL, NR are normalization factors, n = 2j(l), mL =
∑2j

i=1mi and mR =
∑2j

i=1 m̃i

with mi = 1
2
(δαi,1 − δαi,2) and m̃i = 1

2
(δβi,1 − δβi,2). The operators L̂ and R̂ are the

SU(2)⊗U(1) flux creation operators at the left and right end of every link and create states

in the prepotential Hilbert space HSU(2)
p . Note that these states are SU(2) irreducible as

they are symmetric in all the SU(2) spin half indices and are defined for later convenience.

The gauge theory Hilbert space Hg is spanned by direct product of states of type

(2.14) on all the lattice links. Note that as the flux value j → ∞ on various links1, the

construction of the gauge theory Hilbert space Hg through (2.14) becomes more and more

tedious. But the same construction trivializes in terms of prepotentials through 2.16.

From (2.14) and (2.16) we conclude that the Hilbert space Hp created using the pre-

potential operators on all lattice links is also the SU(2) gauge theory Hilbert space:

HSU(2)
g ≡ HSU(2)

p . (2.17)

However, the construction of Hg using the prepotentials (2.16) is much simpler than the

equivalent construction (2.14) using the link operators. This simplicity occurs because

unlike the link operators Uαβ(n, i) which are associated with links, the prepotential op-

erators are attached to the sites (i.e, left or right ends of every link). Further, all the

SU(2) prepotential creation operators commute amongst themselves and we do not need

(2j)! terms (as in (2.14)) to get the symmetries of SU(2) Young tableau. In words, the

symmetries of SU(2) Young tableau are inbuilt in SU(2) prepotential operators. In the

case of SU(N) gauge theory with N ≥ 3 [35, 36], the identification (2.17)is no longer

valid. In fact HSU(N)
g ⊂ HSU(N)

p because of the existence of certain SU(N) gauge invariant

operators for N ≥ 3. We will discuss this issue in detail in the chapter 5 and 6 while

discussing prepotential formulation for SU(3) and SU(N) respectively.

1These large j configurations are expected to dominate in the continuum (g → 0) limit.
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2.2.2 The additional U(1) gauge invariance

One can see it clearly that the defining equations (2.11) for the prepotential operators are

invariant under U(1)⊗ U(1) gauge transformations on every link:

a†α(L)→ eiθ(L)a†α(L), a†α(R)→ e−iθ(R)a†α(R). (2.18)

Note that the above abelian gauge transformations are defined on the two sides of every

link and are independent of the SU(2) gauge transformations (2.13) which are defined at

every lattice site. Using (2.11), the electric field constraints (2.6) on the links become the

number operator constraints in terms of the prepotential operators:

N̂(L) ≡ a†(L) · a(L) = N̂(R) ≡ a†(R) · a(R) ≡ N̂ (2.19)

In (2.19), N̂ ≡ N̂(n, i) and imply θ(L) = θ(R) on every link which reduces the extra

U(1)⊗ U(1) gauge invariance to U(1). This is also clear from the fact that each state on

both side of the link is being created by the action of link operator. Hence the total flux of

the states must be same. Actually in terms of prepotentials both the ends are decoupled

except the U(1) gauge invariance. We will again discuss these issues in a great detail while

discussing prepotentials for higher SU(N) gauge groups. We can summarize by stating

that in the prepotential formulation non-abelian fluxes can be absorbed locally at a site

and the abelian fluxes spread along the links. Both the gauge symmetries together lead

to non-local (involving at least a plaquette) Wilson loop states.

2.2.3 Link operators

The equations (2.11) already defines the left and right electric fields in terms of the pre-

potentials. To establish complete equivalence, we now write down the link operators

explicitly in terms of the prepotentials. From SU(2) gauge transformations of the link

operator in (2.7) and SU(2)⊗U(1) gauge transformations (2.13), (2.18) of the prepoten-

tials,

Uα
β = ã†α(L) η a†β(R) + aα(L) θ ãβ(R), (2.20)

where η and θ are functions of SU(2) invariant number operator. The action of link

operator in eqn. (2.20) on any SU(2) state residing on the link is graphically illustrated
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Figure 2.2: The Young tableau interpretation of the SU(2) link operator U in terms of

the prepotential operators (2.20) acting on a state with nL = nR = 2j. The two terms in

(2.20) correspond to the two sets of Young tableaus on the right hand side of this figure

respectively.

in terms of SU(2) Young tableaus in Figure 2.2.

Since prepotentials are doublets, the link operator is a 2 × 2 matrix and must be SU(2)

valued. Again as we have already mentioned the prepotentials decouple the left and right

part of a link which are only connected by the number operator constraint discussed in

the last section. This is obvious in the explicit matrix form of the link operator written

as the product of the left part UL and the right part UR as:

U =

(
a†2(L)ηL a1(L)θL
−a†1(L)ηL a2(L)θL

)
︸ ︷︷ ︸

UL

(
ηRa

†
1(R) ηRa

†
2(R)

θRa2(R) θR(−a1(R))

)
︸ ︷︷ ︸

UR

(2.21)

Where, ηL, ηR, θL, θR are the left and right invariants constructed out of number operators.

¿From (2.20) it follows that, η = ηLηR, θ = θLθR. Since UL and UR are themselves

SU(2) matrix, they must satisfy unitarity by themselves. From (2.21):

U †LUL =

(
η̄L

(
N̂ + 2

)
ηL 0

0 θ̄LN̂θL

)
, URU

†
R =

(
ηRN̂ η̄R 0

0 θR

(
N̂ + 2

)
θ̄R

)
(2.22)

In (2.22), N̂ = a†(L) · a(L) = a†(R) · a(R) is the common number operator (2.19) on the

link (n, i). Therefore, for Uαβ to be unitary as well as unimodular we get:

ηL =
1√
N̂ + 2

, θL =
1√
N̂
, ηR =

1√
N̂
, θR = − 1√

N̂ + 2
. (2.23)

Finally, the link operator can be disentangled into its left and right parts as:

U =
1√
N̂ + 1

(
a†2(L) a1(L)

−a†1(L) a2(L)

)
︸ ︷︷ ︸

UL

(
a†1(R) a†2(R)

a2(R) −a1(R)

)
1√
N̂ + 1︸ ︷︷ ︸

UR

≡ UL UR (2.24)
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and satisfies U †U = UU † = 1. Moreover using (2.12) one can show explicitly that,

[Uαβ, Uγδ] =
[
Uαβ, U

†
γδ

]
= 0 (2.25)

Note that, the above relation is non-trivial as Uαβ involve both creation and annihilation

operators.

2.3 Summary and Discussion

In this chapter we have redefined the conventional canonically conjugate variables of the

lattice gauge theory Hamiltonian in terms of a set of new variables called prepotentials.

We have re-expressed the color electric fields as well as the link variables in terms of

prepotentials. The most important feature of this formulation is that the non-abelian

gauge invariance of the theory gets confined to prepotentials located around lattice site

with additional abelian gauge invariance involving prepotentials along every link. This

is manifested in the construction of the link operator (2.24) which breaks up into UL

and UR which transform as matter fields at the left and right ends of the link. It is also

worth mentioning that all the states in the gauge theory Hilbert space of the theory can

be constructed very easily in terms of prepotential as shown in (2.16) compared to the

conventional construction in (2.14).

In the next chapter we exploit the prepotential formulation of SU(2) Hamiltonian

lattice gauge theory to construct all possible mutually independent loop states.



Chapter 3

Prepotentials and Loop Formulation

In this chapter we discuss Mandelstam constraints in detail, first in terms of Kogut

Susskind link operators and then in terms of prepotential operators. We show that the

non-local Mandelstam constraints become local in the prepotential formulation.

3.1 Wilson loops and Mandelstam constraints on lattice

For a d-dimensional periodic lattice with nd sites and dnd links, the dimension of the

physical Hilbert space (N ) is the dimension of the quotient space ⊗linksSU(N)/ ⊗sites
SU(N), as each link carries a SU(N) link operator while Gauss law is satisfied at each

site.

N SU(N) = (N2 − 1)(d− 1)nd. (3.1)

Hence there is only (N2− 1)(d− 1) physical degrees of freedom locally at each site of the

lattice. However, the loop Hilbert space or the space of all possible loop states is always

of a bigger dimension.

In the last chapter we have defined the prepotential operators at both ends of a link.

Now if we consider a particular site on a d dimensional lattice, it has 2d number of links

connected to it. Each link must carry a set of prepotential doublet at that end. Hence,

at a particular site, we have 2d number of prepotential doublet attached to each of the

2d links emerging from the site. The SU(2) invariants are anti symmetric combination of

any two different prepotential doublets. In terms of Young tableaux it can be understood

well as each prepotential operator represents a single Young tableaux box. The SU(2)

20
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invariant is a column of two boxes. Hence, for a site in 2d lattice, we have total 2d

different prepotential doublet. The total number of invariants that we can construct is

now 2dC2. This is precisely the dimension of the loop Hilbert space of SU(2) gauge theory

at each site. But from (3.1), the dimension of physical Hilbert space is 3(d−1) per lattice

site. Note that, in terms of SU(2) prepotentials there exists an additional abelian gauge

invariance as discussed in last chapter. This extra abelian gauge invariance will put a

constraint in each direction. So, in d dimensional lattice, there exist d number of U(1)

Gauss law constraint. Hence we are left with

MSU(2) = 2dC2 − d = 2d(d− 1)

loop degrees of freedom per lattice site. Now it is clear that, there should be additional

MSU(2) −N SU(2)/nd = 2d(d− 1)− 3(d− 1) = 2d2 − 5d+ 3 (3.2)

number of constraints on the local loop basis to get orthonormal loop basis at each site.

Hence there should be exactly 2d2 − 5d+ 3 number of Mandelstam constraints locally at

each site. Note that for d = 2 we have only one Mandelstam constraint per site and d = 3

we have six Mandelstam constraints per site.

We immediately see that this precise counting of Mandelstam constraints present in the

theory can be obtained in prepotential approach. We now review them briefly in terms

of the standard link operator language. This will also highlight why the Mandelstam

constraints have been so notoriously difficult to solve. To illustrate the overcompleteness

of non-local Wilson loops as well as associated Mandelstam constraints on lattice, let us

first consider the simple example of SU(2) gauge theory for a 2-d lattice consisting of only

two plaquettes. The Wilson loops existing for such a system is given in Figure (3.1a,b,c)

respectively. Although the lattice size as well as dimension of space is small even then

the loop states form an overcomplete basis. There exist only three possible loops for that

system as given in (3.1a,b,c). These three Wilson loop operators satisfy:

(TrWA) (TrWB) ≡ Tr (WAWB) + Tr
(
WAW

−1
B

)
. (3.3)

The Mandelstam identity or constraint follows from the fact that holonomies are nothing

but general SU(2) matrices and hence can always be written in the formW = W 0I+iW iσi,
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Figure 3.1: Mandelstam constraint for two plaquette lattice. The solid lines denotes

intertwining between two plaquettes.

where, σi’s are the Pauli matrices. Note that the operator relation given in (3.3) is a well-

known identity for any two SU(2) matrices WA and WB with the most general form given

by WX = X01 + i
∑3

a=1Xaσ
a where σa are the Pauli matrices, X0, Xa are real and satisfy

X2
0 +X2

1 +X2
2 +X2

3 = 1. As Pauli matrices are traceless, (3.3) comes directly as:

2WA
02WB

0 = 2WA
0WB

0 −WA
iWB

i + 2WA
0WB

0 +WA
iWB

i. (3.4)

Now we can associate Wilson loop states with each of these three loop operators as follows:

|γ1〉 ≡ (TrWA) (TrWB) |0〉, |γ2〉 ≡ Tr
(
WAW

−1
B

)
|0〉, |γ3〉 ≡ Tr (WAWB) |0〉, (3.5)

The identity (3.3) implies the fundamental Mandelstam constraint in 2d:

|γ1〉 = |γ2〉+ |γ3〉. (3.6)

Thus we see that the three loop states |γ1〉, |γ2〉 and |γ3〉 are linearly dependent.

Note that the above discussed simplest Mandelstam constraint is there for loops carry-

ing only one unit of flux (j = 1/2). As soon as it starts carrying more and more fluxes, life

becomes complicated even for this small lattice. Only two plaquettes but each carrying

two units of fluxes (j = 1) case implies seven mutually dependent states as demonstrated

in 3.2. To appreciate the problem, let us consider the most general loop states constructed
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Figure 3.2: Loops involving two units of fluxes around a two plaquette lattice.

for these two plaquettes A and B:

|NA, NB〉 ≡ (TrWA)NA(TrWB)NB |0〉

= (TrWA)NA−1(TrWB)NB−1(TrWAWB + TrWAW
−1
B )|0〉

= (TrWA)NA−2(TrWB)NB−2(TrWAWB + TrWAW
−1
B )2|0〉

.

.

= (TrWA)NA−Nmin(TrWB)NB−Nmin(TrWAWB + TrWAW
−1
B )Nmin |0〉 (3.7)

where NA, NB are two arbitrary integers representing the SU(2) fluxes over A and B

and Nmin=Minimum(NA, NB). The simple example, where NA = 2 and NB = 2, all

possible loop states have been illustrated in figure(3.2). Thus, for the two plaquette

sytem carryning |NA, NB〉 units of flux, there exist very large number of distinct but

linearly dependent Wilson loop states contained in the relations (3.7). Note that for weak

coupling limit it is necessary to include loops carrying all possible fluxes and that too for a

arbitrary large lattice! To appreciate the difficulty we can further extend this simple two

plaquette system with addition of one more plaquette. Before that, it is worth mentioning

that, in general, if more than two loops in SU(2) lattice gauge theory passes through a

particular site, there exists a set of identities satisfied by these Wilson loops as discussed

in [37]. For the set of r (r > 2) loops Γ1(n), Γ2(n), · · · ,Γr(n) all based at lattice site n.

These loops start from n in the direction i1, i2, · · · ir and come back to n from directions
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j1, j2, · · · jr respectively. Then the products of these Wilson loops satisfies:

∑
αi1
···αir

βj1
···βjr

εαi1αi2 ···αir ε
βj1βj2 ···βjr (W (Γ1(n))αj1 βi1 (W (Γ2(n))αj2 βi2 · · · (W (Γr(n))αjr βir ≡ 0. (3.8)

Using the identities

εαi1αi2 ···αir ε
βj1βj2 ···βjr = δ

βj1
αi1
δ
βj2
αi2
· · · δβjrαir

− δβj1αi2
δ
βj2
αii
· · · δβjrαir

+ · · ·

(3.8) can be written in terms of traces of Wilson loops [37]:

TrW (Γ1)TrW (Γ2) · · ·TrW (Γr)

− TrW (Γ1Γ2)TrW (Γ3)TrW (Γ4) · · ·TrW (Γr) + · · · = 0. (3.9)

This general identity can be illustrated for 3 loops W1,W2,W3 (may be three plaquettes

only) in SU(2) gauge theory passes through a particular lattice site. This example is as

well an extension of the earlier two plaquette scenario to the same involving 3 plaquettes.

These three loops satisfy the relation:

∑
α1,α2,α3
β1,β2,β3

εα1α2α3ε
β1β2β3Wα1

1 β1W
α2
2 β2W

α3
3 β3

=
[
δα1

β1δα2

β2δα3

β3 − δα1

β2δα1

β2δα3

β3

+δα1

β2δα2

β3δα3

β1 − δα1

β3δα2

β2δα3

β1

+δα1

β3δα2

β1δα3

β2 − δα1

β1δα2

β3δα3

β2

]
Wα1

1 β1W
α2
2 β2W

α3
3 β3

= Tr (W1) Tr (W2) Tr (W3)− Tr (W1W2) Tr (W3)

+Tr (W1W2W3)− Tr (W1W3) Tr (W2)

+Tr (W1W3W2)− Tr (W2W3) Tr (W1)

≡ 0 (3.10)

It is clear that there will be more and more constraint relations as the dimension of

the lattice will increase. With the realization that there can be only one Mandelstam

constraint in 2+1 dimension given in (3.3), the identity (3.10) must not be an independent
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Figure 3.3: Mandelstam identities involving three loops originating and ending at one

lattice site for SU(2) gauge theory.

one, but should just be a consequence of (3.3) and is obtained as below:

R.H.S of (3.10) = Tr (W1) Tr (W2) Tr (W3)− Tr (W1W2) Tr (W3)

+ Tr (W1W2W3)︸ ︷︷ ︸

=

Tr (W1W2) Tr (W3)− Tr
“
W1W2W

−1
3

”
−Tr (W1W3) Tr (W2)

+ Tr (W1W3W2)︸ ︷︷ ︸

=

Tr (W1W3) Tr (W2)− Tr
“
W1W3W

−1
2

”
−Tr (W2W3) Tr (W1)

= Tr (W1) Tr (W2) Tr (W3)− Tr
(
W1W2W

−1
3

)
− Tr

(
W1W3W

−1
2

)︸ ︷︷ ︸

=

Tr (W1) Tr
“
W3W

−1
2

”
− Tr (W1) Tr

“
W2W

−1
3

”
−Tr (W2W3) Tr (W1)

= Tr (W1) Tr (W2) Tr (W3)− Tr (W1)
(
Tr (W3W2) + Tr

(
W3W

−1
2

))
= Tr (W1) Tr (W2) Tr (W3)− Tr (W1) Tr (W2) Tr (W3) = 0 (3.11)

This general Mandelstam identity for r = 3 has also been illustrated in figure 3.3. It is

practically impossible to solve all these constraints to find out the complete loop basis of

the theory. That is why Mandelstam constraints have not been solved even for SU(2) case

in arbitrary dimension and arbitrary lattice size and is still the main obstacle that one faces
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in the loop formulation of any gauge theory [21]. In [32] it is shown that the Mandelstam

constraints constitute sufficient algebraic conditions on Wilson loop variables to allow

reconstruction of the corresponding gauge potentials. In the past, the issues related to

Mandelstam constraints have been mostly analyzed in the context of SU(2) gauge group,

and that too within ad-hoc approximation schemes like small lattice/cluster size. For

example, in [20] the Mandelstam constraints are solved and eigenvalues equations are

analyzed on computer using small lattices and small loops. In [21, 22] an approximate

loop cluster method in 2+1 dimensions is developed and the Schrödinger equation is

expressed as difference equations in these cluster coordinates.

But from the SU(2) example we could see that the identities (3.8) corresponding to

Migdal’s Mandelstam constraints for r = 3 is not an independent one as it can be derived

from another identity (3.3) involving only two Wilson loops. It also follows from similar

calculation, that the identities involving any arbitrary number of loops r = 4, 5, ... can

also be derived using the single fundamental identity (3.3) for d=2.

In the next section we define loop states for SU(2) lattice gauge theory in terms of

prepotentials and re-examine the above issues involving Mandelstam identities within the

prepotential formulation.

3.2 Loop states in terms of Prepotentials: the non-abelian in-

tertwining and abelian weaving

The advantage of the SU(2) prepotential operators is that under SU(2) gauge transfor-

mations they transform locally as SU(2) fundamental matter fields (2.13). Therefore, the

SU(2) invariant loop Hilbert space HL can be constructed and analyzed locally in terms

of HSU(2)(n) at each and every lattice sites n. Let us consider all the prepotentials around

a lattice site n in a d dimensional lattice defined as : a†α[n, i], i = 1, 2, ..., 2d, where we

have omitted the left or right index as shown in Figure (3.4) for d = 2. Under the SU(2)

gauge transformation all of these prepotentials transform as:

a†α[n, i]→ a†β[n, i]Λ†βα(n), i = 1, 2, .., 2d.
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Figure 3.4: The 2d prepotential SU(2) doublets a†[n, i], i=1,2,...,2d around every lattice

site n shown in d = 2 by their Young tableau boxes �. They all transform as doublets

under SU(2) gauge transformation at site n.

Hence, all possible SU(2) invariant operators at site n are the “intertwine” of any two

different prepotentials belonging to two different links. i.e,

Lij(n) = εαβ a
†
α[n, i] a†β[n, j] ≡ a†[n, i] · ã†[n, j], i, j = 1, 2, ..., 2d; i < j. (3.12)

The 2dC2 = d(2d − 1) intertwining operators Lij(n) in (3.12) correspond to putting

two Young boxes corresponding to [i] and [j] directions into a single column by anti-

symmetrizing them to construct SU(2) singlets. Intertwining between different prepoten-

tial operators has been shown in figure (3.5). Hence, the basic SU(2) invariant operators in

our theory are the SU(2) Casimirs along with these intertwining operators which serves as

the basic building blocks of any gauge invariant operator defined locally at each site of the

lattice. These set of operators acting on the strong coupling vacuum create the complete

SU(2) gauge invariant Hilbert space HSU(2)(n) at site n. Note that Lij(n) = −Lji(n),

Lii = 0 implyies the fact that self intertwining is not allowed.

Thus a most general state in HSU(2)(n) is given by:

|~l(n) 〉 ≡

∣∣∣∣∣∣∣∣∣∣∣

l12 l13 l14 .... l1(2d)

l23 l24 .... l2(2d)

.... .... ....

l2d−2(2d−1) l2d−2(2d)

l2d−1(2d)

〉
=

2d∏
i,j=1
j〉i

(Lij(n))lij |0〉, lij ∈ Z+. (3.13)

In (3.13), Z+ denotes the set of all positive integers and lij(n)(≡ −lji(n), lii = 0) are 2dC2

SU(2) gauge invariant intertwining integer quantum numbers characterizing the SU(2)
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Figure 3.5: Graphical representation of SU(2) invariant intertwining illustrated for the

states |~l1 〉, |~l2 〉 and |~l3 〉. The thick lines should be compared with the corresponding

thick lines in Figure (3.1).

gauge invariant Hilbert space at the site n. The physical Hilbert space of gauge theory

HSU(2)
phys is obtained by taking direct product of HSU(2)(n) for all lattice sites and weaved

by the U(1) Gauss law along each and every link. In Figure (3.5) we show the following

three basic loop states constructed in terms of prepotentials in d = 2 :

|~l1 〉 =

∣∣∣∣∣∣
1 0 0

0 0

1

〉
, |~l2 〉 =

∣∣∣∣∣∣
0 1 0

0 1

0

〉
, |~l3 〉 =

∣∣∣∣∣∣
0 0 1

1 0

0

〉
(3.14)

The above three states |~l1 〉 = L12L34|0〉, |~l2 〉 = L13L24|0〉, |~l3 〉 = L14L23|0〉 are manifestly

local SU(2) gauge invariant as they commute with the Gauss law constraints. The states

|~l(n) 〉 are also eigenstates of individual 2d Casimirs along 2d links:

J [n, i].J [n, i]|~l(n) 〉 = j[n, i](j[n, i] + 1)|~l(n) 〉, i = 1, 2, 3, 4 (3.15)

where,

2j[n, i] =
2d∑

k 6=i=1

lik(n), lik(n) = lki(n), lik(n) ∈ Z+ (3.16)

We note that (3.16) is both necessary and sufficient condition on j[n, i], i = 1, 2, 3, .., 2d

to get SU(2) singlets.

Note that, in terms of prepotentials, besides the SU(2) Gauss law, there also exists

an additional U(1) Gauss law. The invariance under the abelian gauge transformation

on links imply that on any link the number of left oscillators is equal to the number of

right oscillators. Every link (n,i) satisfies this abelian Gauss law by carrying N(n, i) units
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of abelian flux lines. Hence from the SU(2) ⊗ U(1) Gauss law the flux lines must be

continuous throughout the lattice through the SU(2) intertwining at each of the sites.

Thus, all possible SU(2) invariant intertwining within HSU(2)
p (n) and U(1) weaving of

the neighboring HSU(2)
p (n′) is geometrically equivalent to considering all possible loops

on the lattice leading to the loop Hilbert space HSU(2)
phys , where n and n′ denote any two

neighbouring sites. that is:

HSU(2)
phys =

∏′

n
⊗HSU(2)

p (n) (3.17)

where, the prime over the product denote it to be consistent with the U(1) Gauss law

along any link. Hence it turns out that these two picture of loops are mutually equivallent

as from any given configuration of closed loops on a lattice one can find out all the

intertwining quantum numbers lij(n) at each site n within the loops by simply counting

the number of loop lines going from [i]th to [j]th direction and vice versa. In the next

section we discuss the issue of Mandelstam identities in detail and solve them explicitly

in terms of the prepotential operators.

3.3 Mandelstam Constraints

In this section we discuss the issue of constraints, in context of the local loop basis |~l(n) 〉
in (3.13) at lattice site n. The Wilson loop basis in terms of prepotentials in d spatial

dimensions are locally characterized by (Number of intertwining quantum numbers per

site − Number of U(1) constraints per site) = 2dC2 − d = 2d(d − 1) integers per lattice

site. It is evident that this basis gives a overcomplete description of the physical Hilbert

space of SU(2) gauge theory as there should be only 3(d− 1) physical degrees of freedom

per lattice site. It implies that there should be 2d(d − 1) − 3(d − 1) constraints present

at each site. In d = 2, the number of such constraint is only one. We have already seen

in terms of non-local Wilson loops, that there exists only one fundamental Mandelstam

constraint for SU(2) as given in (3.3). This fact can be illustrated in a much better way

using prepotentials. As we have seen in the last section that the loop operators existing at

each lattice site are the Lij(n) operators defined in (3.12). The basic loop states satisfying

the U(1) constraint at a site of a 2 dimensional lattice are |~l1 〉, |~l2 〉, |~l3 〉 given in (3.14).
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Now, the six loop operators in d = 2 satisfies the identity:

(a†[1] · ã†[2])(a†[3] · ã†[4]) ≡ (a†[1] · ã†[3])(a†[2] · ã†[4])− (a†[1] · ã†[4])(a†[2] · ã†[3]),(3.18)

This identity is a consequence of the identity εαβεγδ = δαγδβδ−δαδδβγ. The identity (3.18)

implies that the states in (3.14) are linearly dependent:

|~l1 〉 = |~l2 〉 − |~l3 〉 (3.19)

Note that, the SU(2) identity (3.3) involving link operators corresponds to the identity

(3.18) and the Mandelstam constraint (3.6) is the constraint (3.19) written in terms of

the relevant prepotential operators at site n. Note that, in terms of the prepotentials, there

exists only one identity in d = 2 in terms of prepotentials and that particular identity

(3.18) is the only Mandelstam constraint present in the theory given in (3.3).

3.3.1 The solutions

After recasting Mandelstam identities in its local form using the prepotential operators, we

will now solve them locally to find the orthonormal loop basis at each site n. Concentrating

at a particular site n we have 2d angular momentum generators and hence 2d Casimirs,

J2
i ≡

∑3
a=1 J

a[n, i]Ja[n, i], i = 1, 2..., 2d, with eigenvalues ji(ji+1). These set of operators

are contained in the complete set of commuting observables (CSCO) at n, which are given

by 4d angular momentum operators: J2
i , J

z
i , i = 1, 2, .., 2d. Or equivalently we can also

choose the complete set of mutually commuting operators [44,57] as:

CSCO ≡
[
J2

1 , ..J
2
2d; (J1 + J2)2 , (J1 + J2 + J3)2 ...,(

J1 + J2 + J3...J(2d−1)

)2
, J2

total, J
z
total

]
(3.20)

with J2
total = (J1 + J2

2 + J3......+ J2d)
2

and Jztotal = (Jz1 + Jz2 + Jz3 ......+ Jz2d). Now, at

each site, SU(2) Gauss law must hold implying J2
total = Jztotal = 0. Hence, the CSCO

(3.20) is sufficient without last two operators in the list. Now, let us break the CSCO

(3.20) into two parts:

CSCO(I) =
[
J2

1 , J
2
2 , .., J

2
2d

]
,

CSCO(II) =
[
(J1 + J2)2 , ...,

(
J1 + J2 + J3......J(2d−1)

)2
= 2d2

]
(3.21)
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The corresponding SU(2) gauge invariant orthonormal eigenvectors are now characterized

by [44,57]

|j1, j2, ..j2d; j12, j123, .., j12..(2d−1) = j2d〉 ≡ |j1, j2, j12, j3, j123, .., j2d−1, j12..(2d−1) = j2d〉. (3.22)

The states in (3.22) are characterized by the maximum possible (4d− 3) “good quantum

numbers” which can be simultaneously measured at every lattice site.

The most general SU(2) loop states |~l 〉 in (3.13) are eigenstates of of CSCO(I) with

eigenvalues ji(ji + 1), where,

2ji =
2d∑
k=1

lik.

Hence, these loop states can also be characterized by their angular momenta as:

| ~l 〉 ≡ |j1, j2, ...., j2d, jtotal = mtotal = 0〉 (3.23)

However, this characterization is not unique, as the ji’s do not fix lij’s uniquely. If we

consider the loop state |l〉 on a 2 dimensional lattice, we find that under the following

transformations of the loop quantum number, the angular momentum labeling remains

same by (3.16):

l12 → l12 + r + t, l13 → l13 − r + s, l14 → l14 − s− t,

l23 → l23 − s− t, l24 → l24 − r + s, l34 → l34 + r + t. (3.24)

where, r, s, t can take all possible ± integer values such that li,j ≥ 0. To be precise, these

symmetries are the root cause of the Mandelstam constraints between the loop states. The

loop states which are mutually dependent are those which are degenerate with respect to

the CSCO(I). Or one can also say that the degenerate states with respect to CSCO(I) are

all related by the Mandelstam identities (3.18). Therefore, we can lift the degeneracy and

solve the Mandelstam constraints by demanding that the CSCO(I) degenerate eigenbasis

(3.13) to be the eigenstates of CSCO(II) as well. A complete orthonormal loop basis in

d dimension is locally characterized by (4d − 3) angular momentum quantum numbers

and are given in (3.22). Among these, 2d are eigenvalues correponding to CSCO (I). The

remaining (2d−3) eigenvalues of CSCO(II) are not free and have to satisfy the triangular

constraints:

|j12..(k−1) − jk| ≤ j12..k ≤ j12..(k−1) + jk, k = 2, 3, ..., (2d− 1) (3.25)
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along with j12..(2d−1) = j2d.

3.3.2 The triangular constraints

The angular momentum labelling of the physical Hilbert space has been explored in lit-

erature in the context of duality transformation in lattice gauge theories [44] in terms

of triangulated surfaces [57]. In this section, we discuss the solutions of the triangular

constraints, which represents triangulated two dimensional surfaces together with inter-

twining or loop quantum numbers (l12, l13, . . . , l(2d−1)(2d)).

The SU(2) loop states characterized by |j1, j2, ..., j2d〉 in the mapping (3.23) is consis-

tent with the fact that,
∑

k lik(= 2ji), which gives the number of Young tableau boxes on

the [i]th link. It intertwines with some other boxes in some kth link, and the remaining

flux is again available to intertwine with some other angular momentum. To illustrate

this in our present scheme of angular momentum addition, Let us first consider (1, 2)

plane. To get the state |j1, j2, ..., j2d; j12〉 from the degenerate state |j1, j2, ..., j2d〉, we need

to intertwine (antisymmetrize) l12 boxes from 2j1 boxes with l12 boxes from 2j2 boxes so

that we are left with 2j12 boxes in the (12) plane. Therefore, 2j12 = (2j1− l12)+(2j2− l12).

This process is sequential and can be repeated to get the eigenvalues of the CSCO(II)

also in terms of the linking numbers:

l12 = j1 + j2 − j12

l13 + l23 = j12 + j3 − j123

l14 + l24 + l34 = j123 + j4 − j1234

...
... (3.26)

l1(2d) + l2(2d) + ...+ l1(2d) = j12...(2d−1)︸ ︷︷ ︸
=j2d

+j2d − j12...(2d)︸ ︷︷ ︸
=0

= 2j2d

Given j12 at a lattice site, the top equation fixes l12, the next line fixes l13 + l23 in terms

of j12 and j123, and so on. Together with (3.27), the following relations also hold for
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d-dimensional lattice:

2j1 = l12 + l13 + . . .+ l1(2d)

2j2 = l23 + l24 + . . .+ l2(2d) + l12

2j3 = l34 + l35 + . . .+ l3(2d) + l13 + l23

...

2ji =
2d∑

k=i+1

lik +
i−1∑
k=1

lki (3.27)

...

2j2d = l1(2d) + l1(2d) + . . .+ l(2d−1)(2d)

Note that, the left hand side of each of the above set of equations gives the total number

of Young tableaux boxes present on each of the 2d links meeting at the site. The last

equations in (3.27) and (3.27) are exactly same, which is an identity as is already con-

tained in (3.16).

In [29] all orthonormal loop states has been constructed in terms of prepotentials in-

tertwining operators. SU(2) coherent states were used to construct the states together

with the appropriate interpretation, modification and generalization of the techniques

developed in [33]. We just quote the result below.

The orthonormal loop states for a d dimensional lattice are derived [29] as:

|LS〉n ≡ |j1, j2, ..j2d; j12, j123, ...j12..(2d−1) = j2d〉 = N(j)
∑
{l}

′∏
i,j
i<j

1

lij!

(
Lij(n)

)lij(n)|0〉(3.28)

The prime over the summation means that, the linking numbers lij are are summed

over all possible values which are consistent with (3.27) and (3.27). This summations is

taken to construct orthonormal and complete basis out of the degenerate eigen states of

CSCO(I). The normalization constant in (3.28) can be calculated exploiting the SU(2)

coherent states and is obtained as [29]:

N(j) = N(j1, j2, j12)N(j12, j3, j123)N(j123, j4, j1234)......N(j2d, j2d, 0) (3.29)

where N(a, b, c) =
[

(2c+1)
(a+b+c+1)!

] 1
2
[
(−a+ b+ c)!(a− b+ c)!(a+ b− c)!

] 1
2
.
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Considering the equivalence between the angular momentum quantum numbers and

the linking quantum numbers in (3.28), we can find the origin of over-completeness of the

loop basis as well as the Mandelstam identities explicitly. Let us first consider the d = 2

case. We see that the linking quantum numbers are related to the CSCO in the following

way (3.27,3.27):

2j1 = l12 + l13 + l14 , l12 = j1 + j2 − j12

2j2 = l23 + l24 + l12 , l13 + l23 = j12 + j3 − j123

2j3 = l34 + l13 + l23 , l14 + l24 + l34 = j123︸︷︷︸
=j4

+j4 − j1234︸︷︷︸
=0

(3.30)

This above set of relations imply that the linking quantum numbers lij and angular

momentum labeling of the loop states are invariant under,

l12 → l12 , l13 → l13 + p , l14 → l14 − p

l23 → l23 − p , l24 → l24 + p , l34 → l34. (3.31)

Note that these relations can as well be obtained from (3.24) only imposing the constraint

that l12 is fixed. That implies r = −t in (3.24), and p = t+ s. Further note that, the loop

states characterized by the linking quantum numbers, which are 6 in number for d = 2, are

the overcomplete loop basis defined locally at each site of the lattice. The orthonormal

loop hilbert space is spanned by the angular momentum basis |j1, j2, j3, j4, j12〉. The

mapping between these two basis is arbitrary upto a single parameter which denotes that

there exist only one Mandelstam constraint between the overcomplete local loop states

|l〉.

This analysis remains exactly same in any arbitrary dimension d. For example in

d = 3, the orthonormal loop basis is characterized by 6C2 = 15 quantum numbers. The

corresponding angular momentum basis can also be obtained in the same way. Similar

study also shows that the orthonormal basis is fixed with a set of symmetries in the

liking quantum number. That symmetry is by 6 arbitrary parameters which denotes that

there exist six fundamental Mandelstam constraints for d = 3. Let us also illustrate the

example for d = 3 explicitly. The loop state characterized by linking quantum numbers
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is as follows:

|~l(n) 〉 ≡

∣∣∣∣∣∣∣∣∣∣∣

l12 l13 l14 l15 l16

l23 l24 l25 l26

l34 l35 l36

l45 l46

l56

〉
=

6∏
i,j=1
j〉i

(Lij(n))lij(n) |0〉, lij(n) ∈ Z+. (3.32)

whereas, orthonormal loop Hilbert space is spanned by states:

|LS〉 ≡ |j1, j2, j12, j3, j123, j4, j1234, j5, j12345 = j6〉 (3.33)

The linking quantum numbers (3.32) represent the same loop state but are arbitrary upto

the following transformations:

l12 → l12

l13 → l13 + p1

l23 → l23 − p1

l14 → l14 + p2 − p3

l24 → l24 + p3 − p4

l34 → l34 + p4 − p2

l15 → l15 + p5 − p6

l25 → l25 + p6 − p5

l35 → l35 + 2p5 − p3 + p2

l45 → l45 − 2p5 + p3 − p2

l16 → l16 + p6 − p5 + p3 − p2 − p1

l26 → l26 + p4 − p6 + p1 + p5 − p3

l36 → l36 − p5 − p4

l46 → l46 + 2p5 − p3 + p2

l56 → l56 (3.34)
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compatible with the relations:

2j1 = l12 + l13 + l14 + l15 + l16

l12 = j1 + j2 − j12

2j2 = l23 + l24 + l25 + l26 + l12

l13 + l23 = j12 + j3 − j123

2j3 = l34 + l35 + l36 + l13 + l23

l14 + l24 + l34 = j123 + j4 − j1234

2j4 = l45 + l46 + l14 + l24 + l34

l15 + l25 + l35 + l45 = j1234 + j5 − j6

2j5 = l56 + l15 + l25 + l35 + l45

l16 + l26 + l36 + l46 + l56 = 2j6 (3.35)

Note that, there is six arbitrary parameters p1, . . . , p6 in the linking quantum number

labeling which is equivalent to the six Mandelstam identities present for three dimensional

SU(2) gauge theory.

The most important fact about the construction (3.28) is that the equivalent construc-

tion of orthonormal loop basis in terms of intertwining operators Lij and intertwining

linking numbers lij in arbitrary dimensions becomes extremely involved and complicated

in terms of the link operators Uαβ and the angular momentum quantum numbers. In that

case the states

|j1, j2, j12, j3, j123, ...., j2d−1, j12..(2d−1), jtotal,mtotal〉

can be obtained by using Clebsch-Gordan coefficients:

|j1, j2, j12, j3, j123, ..., j12..(2d−1) = j2d〉 =
∑
~m

Cj12..2d=0m12..2d=0
j12..(2d−1)m12..(2d−1),j2dm2d

...Cj123m123

j12m12,j3m3
Cj12m12

j1m1,j2m2

2d∏
i=1

⊗|jimi〉. (3.36)

However, in such approaches one must deal with gauge non-invariant Clebsch Gordan

coefficients [58]. In this situation the only way out is found to be the use of graphical

methods. In contrast, the construction (3.28) is in terms of gauge invariant intertwining

numbers (not angular momentum) which makes it simple.
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3.4 Summary and discussion

In this chapter we have discussed the loop formulation of lattice gauge theories emphasiz-

ing on the overcompleteness of the loop Hilbert space. We have illustrated in this chapter,

how prepotential formulation enables us to overcome the problem of overcompleteness in

loop Hilbert space and to construct complete and orthonormal basis for physical Hilbert

space of Lattice gauge theory. For the purpose of illustration we took SU(2) group as

an example. The full analysis consists of systematically solving Gauss law constraints

and characterizing the states by linking quantum numbers, which solves the triangular

constraints, then the solution of Mandelstam identities are obtained in terms of states

characterized by angular momentum quantum numbers. Thus apparently highly non-

local and formidable Mandelstam constraints in terms of the link operators were cast and

then solved locally in terms of the prepotential intertwining operators. The manifestly

SU(2) gauge invariant techniques involving gauge invariant local intertwining prepotential

operators and intertwining/linking quantum numbers have direct geometrical interpreta-

tion in terms of loops. In the next chapter we consider the dynamical issues of the theory

and explicitly calculate the dynamics of orthonormal loop states around a plaquette.



Chapter 4

Loops and Dynamics

As discussed in the previous chapter, the space of non-local Wilson loops is spanned by a

overcomplete set of loop states satisfying the Mandelstam identities amongst themselves.

The actual dynamics of the theory can only be obtained by studying the action of the

Hamiltonian on all possible loop states. However, in the loop formulation of lattice gauge

theories the dynamics of the Hamiltonian has been studied only within a truncated basis.

The truncation of the loop basis is originaly motivated by the Strong coupling expansion,

where only a few loops of smaller lengths and fluxes contribute to the spectrum. This

understanding was applied to non-perturbative study of loops where the Hamiltonian is

diagolnalized numerically within a truncated basis [18,20,22]. These small set of loops are

considered to form a cluster, within which the dynamics is studied. For example, in [22],

the cluster is considered to be consists of only three different loops constructed on the

lattice. The orthogonal loops are a single plaquette, double winding of a plaquette and

two adjacent plaquette with one link common. Clearly this approximation is quite crude

and far from the real dynamics where all the loops interact among themselves via the

action of the Hamiltonian. Another similar attempt [18] to understand the dynamics of

the gauge theory involved the study of the lattice Schrodinger equation. In this work the

eigenvalue equation is mapped to a discretized version of Mathieu equation, but again with

an abrupt trucnation of the physical basis. In 3+1 dimension the orthogonal loop states

created from vacuum by upto three actions of the Hamiltonian [18], i.e loops involved with

three plaquettes which are 39 in number was considered to study the deformation of the

loops by the action of Hamiltonian and finally to study the spectrum. The Hamiltonian

was diagonalized numerically within this basis and mass gap was calculated. Another

38
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work to be mentioned is [20] where, all the orthogonal loops upto a maximum length of

12 lattice units existing on a 4×4 lattice were considered. The number of possible loops

actually grows exponentially with increasing length. Hence it becomes computationally

tough to solve the Schrodinger equation within that basis. In [20], the Hamiltonian is

solved within the basis spanned by 8660 independent loop states. It is worth mentioning

that the Hamiltonian matrix written in loop basis is a sparse one, i.e most of the matrix

elements are zero as only a few loops interact among themselves through the single action

of Hamiltonian.

However we have already seen how the prepotential formulation enables us to construct

the exact and orthonormal loop basis present locally at each site of the lattice. Having

constructed the orthonormal loop basis at each site, we are now in a platform to calculate

the loop dynamics in terms of prepotentials.

4.1 Dynamics within local orthonormal loop states

To discuss dynamics of loops, we consider pure SU(2) lattice gauge theory Hamiltonian [2]:

H =
∑
n,i

3∑
a=1

Ea(n, i)Ea(n, i) +K
∑

�

Tr
(
U� + U †�

)
(4.1)

For calculational simplicity we consider the lattice to be in dimension two in the beginning.

Let us consider a plaquette abcd as shown in the Figure (4.1). Using (2.24), we write the

gauge invariant TrUplaquette over abcd in terms of the prepotentials:

TrUabcd = Fabcd

[ (
a†[1] · ã†[2]

)
a

(
a†[2] · ã†[3]

)
b

(
a†[3] · ã†[4]

)
c

(
a†[4] · ã†[1]

)
d

+
4∑
i=1

π(li) +
4∑

i,j>i=1

π(li)π(lj) +
4∑

i,j>i,k>j=1

π(li)π(lj)π(lk) + π(l1)π(l2)π(l3)π(l4)
]
Fabcd

≡
∑

αβγδ=±

Hαβγδ (4.2)

where Fabcd ≡ F (l1)F (l2)F (l3)F (l4). In (4.2), there are sixteen SU(2) ⊗ U(1) gauge

invariant terms which are produced by substituting (2.24) in the Tr(Uplaquette) term of the
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Figure 4.1: The plaquette abcd with the corresponding prepotential operators from Fig-

ure (3.4).

Figure 4.2: Pictorial representation of (4.2). The solid line along a link implies increase

of flux along that link whereas dotted line means decrease of flux.

Hamiltonian. The first plaquette operator on the r.h.s. of the top equation in (4.2) is

written explicitly in terms of the prepotential intertwining operators at lattice sites a, b,

c and d in Figure (4.1). The action of the first term is to increase the angular momentum

flux by 1
2

units on all of the four links of abcd and therefore we represent it by H++++.

The other 15 terms changes the flux over the plaquette in all possible way keeping the

U(1) Gauss law valid for each link. All those actions can be understood by the action of

π. The single π operation at any of the 4 links (l1, l2, l3, l4) acting on H++++ produces

4 terms: H−+++, H+−++, H++−+, H+++−. Similarly, the double π operation produces 6

operators: H−−++, H−+−+, H−++−, H+−−+, H+−+−, H++−−. There are four 3 π terms in

(4.2): H+−−−, H−+−−, H−−+−, H−−−+. Finally, the 4 π operation on all the four links

produces a single term: H−−−−. Note that
(
Hαβγδ

)†
= H−α−β−γ−δ. This decomposition

is pictorially illustrated in figure 7.40 where, the dotted line denotes the π operation on

that link. The advantage of the form (4.2) is that now this magnetic field term can be

analyzed locally at four sites surrounding the plaquette a, b, c and d in the manifestly

SU(2) gauge invariant way. The loop state around a plaquette |jabcd〉 can be written as
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Figure 4.3: Angular momentum addition scheme around a plaquette

(see figure 4.3):

|jabcd〉 ≡ |ja1ja2ja3ja4ja12〉 ⊗ |jb1jb2jb3jb4jb12〉 ⊗ |jc1jc2jc3jc4jc12〉 ⊗ |jd1jd2jd3jd4jd12〉. (4.3)

To satiafy the U(1) Gauss law (see Figure (4.3)):

ja1 = jb3 ≡ j1, j
b
2 = jc4 ≡ j2, j

c
3 = jd1 ≡ j3, j

d
4 = ja2 ≡ j4. (4.4)

We now compute the matrix elements of TrUabcd directly within the loop basis (4.3) in the

next section using generalized Wigner-Eckart theorem and Biedenharn-Elliot identities.

4.2 Explicit Computation in 2 dimension

The electric part of the Hamiltonian (4.1) simply counts the abelian flux lines without

changing the loop states. The action of the magnetic field term in (4.2) on the loop states

is non-trivial. We now calculate the matrix elements of TrU� in d=2 below.
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Let us define the square root of the multiplicity factors and phase factors:

Π(x, y, ....) ≡
√

(2x+ 1)(2y + 1)...., (4.5)

η(x, y) ≡ (−1)x+y+ 1
2 (4.6)

for later notational convenience.

The matrix elements of an intertwining operators L12 =
(
a†[1] · ã†[2]

)
in the correspond-

ing angular momentum basis |j1, j2, j12,m12〉 are given by the generalized Wigner Eckart

theorem1 [38, 39]:

〈j̄1, j̄2, j̄12, m̄12|
(
a†[1] · ã†[2]

)
|j1, j2, j12,m12〉

=
√

2 〈j̄1, j̄2, j̄12, m̄12|
(
a†[1]⊗ a†[2]

)0

0
|j1, j2, j12,m12〉

=
√

2 (−1)(j̄12−m̄12) Π(j12, j̄12, 0)

(
j̄12 0 j12

−m̄12 0 m12

)
j̄1 j1

1
2

j̄2 j2
1
2

j̄12 j12 0


× 〈j̄1||a†[1]||j1〉〈j̄2||a†[2]||j2〉 (4.7)

In (4.7),
(
a†[1]⊗ a†[2]

)0

0
≡
∑

m,m̄=± 1
2
C0,0

1
2
,m; 1

2
,m̄
a†mb

†
m̄ with a+ 1

2
≡ a1, a− 1

2
≡ a2. The

reduced matrix elements of the prepotential operators are given by2

〈j̄||a||j〉 = Π(j, j̄) δj̄,j− 1
2
, 〈j̄||a†||j〉 = Π(j, j̄) δj̄,j+ 1

2
. (4.8)

1The WignerEckart theorem is a theorem of representation theory and quantum mechanics. It states
that matrix elements of spherical tensor operators on the basis of angular momentum eigenstates can be
expressed as the product of two factors, one of which is independent of angular momentum orientation
(the reduced matrix element), and the other a Clebsch-Gordan coefficient. The theorem reads:

〈j,m|T kq |j′m′〉 = 〈j||T k||j′〉Cjmkqj′m′
where T kq is a rank k spherical tensor, |jm〉 and |j′m′〉 are eigenkets of total angular momentum J2

and its z-component Jz, 〈j||T k||j′〉 is the reduced matrix element having a value which is independent of
m and q, and Cjmkqj′m′ = 〈j′m′; kq|jm〉 is the Clebsch-Gordan coefficient for adding j′ and k to get j.

In effect, the WignerEckart theorem says that operating with a spherical tensor operator of rank k
on an angular momentum eigenstate is like adding a state with angular momentum k to the state. The
matrix element one finds for the spherical tensor operator is proportional to a Clebsch-Gordan coefficient,
which arises when considering adding two angular momenta.

2Reduced matrix element of any operator OJM is calculated as:

〈j′||OJM ||j〉 =
2J + 1
2j′ + 1

∑
m′,m

Cj
′m′

j,m;J,M 〈j
′m′|OJM |jm〉

Note, J = 1/2,M = ±1/2 for a† and J = −1/2,M = ∓1/2 for a.
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The coefficients

(
j1 j2 j3

m1 m2 m3

)
,


j1 j2 j12

j3 j4 j34

j13 j24 j

 represent the 3j and 9j symbols

respectively. Using the values [38]:(
j̄12 0 j12

−m̄12 0 m12

)
=

(−1)−j̄12+m̄12

Π(j12)
δj12,j̄12

δm12,m̄12 ,
j̄1 j1

1
2

j̄2 j2
1
2

j̄12 j12 0

 =
(−1)j1+ 1

2
+j̄2+j̄12

Π(1
2
, j12)

δj12,j̄12

{
j̄1 j1

1
2

j2 j̄2 j12

}
,

we get:

〈j̄1, j̄2, j̄12, m̄12|L12|j1, j2, j12,m12〉 = δj12,j̄12
δm12,m̄12(−1)j12η(j1, j̄2)

{
j̄1 j1

1
2

j2 j̄2 j12

}
〈j̄1||a†[1]||j1〉〈j̄2||a†[2]||j2〉. (4.9)

Note that (4.9) can also be checked by directly applying the above intertwining op-

erator on the loop basis to get it’s matrix elements (4.9) algebraically. It is clear that

the intertwining operator L12 = a†[1] · ã†[2] increases the fluxes j1 and j2 by 1
2

units each.

Further, as L12 commutes with the (J [1] + J [2])2, the matrix elements are diagonal in j12

and m12. The matrix elements of the intertwining operators in the geometrical form (4.9)

also tell us that all the 16 terms in
∑

αβγδ=±Hαβγδ in (4.2) differ only in their reduced

matrix element structures. Therefore, we need to compute the matrix elements of only

a single term in (4.2), providing enormous simplification at the algebraic level. Let us

choose this term to be the first term in (4.2) associated with the plaquette abcd in Figure

(4.1):

H++++ ≡ Fabcd
(
a†[1] · ã†[2]

)
a

(
a†[2] · ã†[3]

)
b

(
a†[3] · ã†[4]

)
c

(
a†[4] · ã†[1]

)
d
Fabcd (4.10)

In computing the loop dynamics below, it is required to change the angular momentum

addition scheme suitably,

|j1, j2, j3, j4, j12〉 ≡ |j1, j2, j12, j3, j123(= j4), j4, jtotal = j(123)(4) = 0〉

= |(j1, j2)j12, (j3, j4)j34(= j12), jtotal = j(12)(34) = 0〉 ≡ |(j1, j2)j12, (j3, j4)j12〉 (4.11)
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The equivalent scheme on the right of (4.11) simplifies the algebra. The relation (4.11) is

obtained by writing:

|j1, j2, j3, j4, j12〉 ≡
∑
all m

C 0,0
j123m123,j4m4

Cj123,m123

j12m12,j3m3
|j1, j2, j12,m12〉|j3m3〉|j4m4〉

=
∑
all m

∑
j34

C0,0
j12m12,j34m34

|j1, j2, j12,m12〉|j3, j4, j34,m34〉 = |(j1, j2)j12, (j3, j4)j12〉.

We have used:

C 0,0
ja123m

a
123,j

a
4m

a
4

=
(−1)j

a
4 +ma4

Π(ja4 )
δja123,j

a
4
δma123,−ma4 ,

(−1)j
a
4 +ma4

Π(ja4 )
C
ja4−ma4
ja12m

a
12,j

a
3m

a
3

= C0,0
ja12m

a
12,j

a
12−ma12

C
ja12−ma12
ja3m

a
3 ,j

a
4m

a
4
.

Note that the normalization operator Fabcd in (4.2) acting on the loop states gives

|jabcd〉 defined in (4.3)and (4.4):

Fabcd|jabcd〉 =
1

Π(j1, j2, j3, j4)
|jabcd〉 (4.12)

Therefore, we only need to compute the matrix elements of the intertwining operators in

(4.10) in the orthonormal loop basis |j1, j2, j3, j4, j12.

Loop dynamics at a:

In H++++ above, the intertwining operator at a is
(
a†[1] · ã†[2]

)
a
. Using (4.9), one

directly gets:

〈j̄a1 , j̄a2 , j̄a3 , j̄a4 , j̄a12|(a†[1] · ã†[2])a|ja1 , ja2 , ja3 , ja4 , ja12〉 = (−1)j
a
12η(ja1 , j̄

a
2 )δja3 ,j̄a3 δja4 ,j̄a4 δja12,j̄

a
12

×
{
ja1 j̄a1

1
2

j̄a2 ja2 ja12

}
〈j̄a1 ||a†[1]||ja1 〉〈j̄a2 ||a†[2]||ja2 〉 (4.13)

The intertwining operator
(
a†[1] · ã†[2]

)
a

increases the SU(2) flux on the links 1 and 4 of

Figure (4.1). Note that this information is contained only in the last two reduced matrix

element terms in (4.13).

Loop dynamics at b:

The intertwining operator at b in (4.10) is
(
a†[2] · ã†[3]

)
b
. To compute it’s action at b,

we write the loop states (3.28) in terms of the basis states which diagonalize (J [2]+J [3])2.
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This is done by changing the angular momentum coupling scheme at site ‘b’ by the

following relation [38]:

|jb1jb2jb3jb4jb12〉 = (−1)(jb1+jb2+jb3+jb123)
∑
jb23

Π(jb12, j
b
23)

{
jb1 jb2 jb12

jb3 jb123 jb23

}
|jb1jb2jb3jb4jb23〉

= (−1)(jb1+jb2+jb3+jb4)
∑
jb23

Π(jb12, j
b
23)

{
jb1 jb2 jb12

jb3 jb4 jb23

}
|jb1jb2jb3jb4jb23〉 (4.14)

In (4.14), |jb1jb2jb3jb4jb23〉 ≡ |jb1, (jb2jb3), jb23, j
b
123 = jb4, j

b
1234 = mb

1234 = 0〉. Note that the phase

factor (−1)(jb1+jb2+jb3+jb4) in (4.14) is real because of the triangular constraints on the angular

momenta or equivalently (3.16). Now we use:

|jb1jb2jb3jb4jb23〉 = (−1)2jb1 |jb2jb3jb4jb1jb23 = jb41〉 (4.15)

and (4.9) to get:

〈j̄b1, j̄b2, j̄b3, j̄b4, j̄b12|
(
a†[2] · ã†[3]

)
b
|jb1, jb2, jb3, jb4, jb12〉 = (−1)j

b
2+jb3−j̄b2−j̄b3η(jb2, j̄

b
3)δjb1,j̄b1δjb4,j̄b4Π(jb12, j̄

b
12)

∑
jb23

(−)j
b
23Π2(jb23)

{
jb3 jb2 jb23

jb1 jb4 jb12

}{
jb1 j̄b4 jb23

j̄b3 jb2 j̄b12

}{
j̄b3 j̄b2 jb23

jb2 jb3
1
2

}
〈j̄b2||a†[2]||jb2〉〈j̄b3||a†[3]||jb3〉

The summation over jb23 in the last line above can be performed using Biedenharn-Elliot

identity [38]:∑
x

(−1)xΠ2(x)

{
a b x

c d p

}{
c d x

e f q

}{
e f x

b a s

}
= (−1)−r

{
p q s

e a d

}{
p q s

f b c

}
r = (a+ b+ c+ d+ e+ f + p+ q + s).

Finally, the loop dynamics at lattice site b is given by:

〈j̄b1, j̄b2, j̄b3, j̄b4, j̄b12|
(
a†[2] · ã†[3]

)
b
|jb1, jb2, jb3, jb4, jb12〉 = (−1)j

b
1+jb4η(jb2, j̄

b
3)η(jb12, j̄

b
12)δjb1,j̄b1δjb4,j̄b4

Π(jb12, j̄
b
12)

{
jb12 j̄b12

1
2

j̄b3 jb3 jb4

}{
jb12 j̄b12

1
2

j̄b2 jb2 jb1

}
〈j̄b2||a†[2]||jb2〉〈j̄b3||a†[3]||jb3〉 (4.16)

Note that the intertwining operator
(
a†[2] · ã†[3]

)
b

changes the flux in the links 1 and 2

as it is clear from the reduced matrix elements as (4.4).
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Loop dynamics at c:

The suitable angular momentum coupling scheme to calculate the matrix element of

the operator
(
a†[3] · ã†[4]

)
c

is |j1, j2, j12, j3, j4, j34 = j12, j1234 = 0,m1234 = 0〉. Hence we

use 4.11 to write At c, we use (4.11) to write

|jc1, jc2, jc3, jc4, jc12〉 = |(jc1, jc2)jc12, (j
c
3j
c
4), jc12〉 = (−1)2jc12|(jc3, jc4)jc12, (j

c
1j
c
2)jc12〉

to get:

〈j̄c1, j̄c2, j̄c3, j̄c4, j̄c12|
(
a†[3] · ã†[4]

)
c
|jc1, jc2, jc3, jc4, jc12〉 = (−1)j

c
12η(jc3, j̄

c
4)δjc1,j̄c1δjc2,j̄c2δjc12,j̄

c
12{

jc3 j̄c3
1
2

j̄c4 jc4 jc12

}
〈j̄c3||a†[3]||jc3〉〈j̄c4||a†[4]||jc4〉 (4.17)

Again note that the change in the flux is on links 2 and 3 from the reduced matrix elements

and equation (4.4).

Loop dynamics at d:

In this case the a†[4] · ã†[1] is easily computed within the basis |j1j2j3j23j4j41 = j23〉.

Hence to compute the loop dynamics at d, we write:

|jd1 , jd2 , jd3 , jd4 , jd12〉 = |jd1 , jd2 , jd12, j
d
3 , j

d
4 , j

d
34(= jd12)〉

=
∑
jd14

(−1)j
d
3 +jd4−jd12Π(jd12, j

d
34, j

d
14, j

d
23)


jd1 jd2 jd12

jd4 jd3 jd34 = jd12

jd14 jd23 = jd14 0

|jd4 , jd1 , jd14, j
d
2 , j

d
3 , j

d
23〉

= (−1)2jd4
∑
j14

Π(jd12, j
d
14)(−1)j

d
1 +jd2 +jd3 +jd4

{
jd1 jd2 jd12

jd3 jd3 jd14

}
|jd4 , jd1 , jd14, j

d
2 , j

d
3 , j

d
23〉 (4.18)

In (4.18), we have used
jd1 jd2 jd12

jd4 jd3 jd12

jd14 jd14 0

 = (−1)j
d
2 +jd12+jd4 +jd14

(
Π(jd12, j

d
14)
)−1
{
jd1 jd2 jd12

jd3 jd3 jd14

}
.

Finally, using (4.18) and the Biedenharn-Elliot identity, the dynamics at d is given by:

〈j̄d1 , j̄d2 , j̄d3 , j̄d4 , j̄d12|
(
a†[4] · ã†[1]

)
d
|jd1 , jd2 , jd3 , jd4 , jd12〉 = −(−1)j

d
2 +jd3η(jd4 , j̄

d
1)η(jd12, j̄

d
12)

δjd2 ,j̄d2 δjd3 ,j̄d3 Π(jd12, j̄
d
12)

{
jd12 j̄d12

1
2

j̄d1 jd1 jd2

}{
jd12 j̄d12

1
2

j̄d4 jd4 jd3

}
〈j̄d4 ||a†[4]||jd4〉〈j̄d1 ||a†[1]||jd1〉(4.19)
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Again note that the change in the flux is on links 3 and 4 from the reduced matrix elements

and relation (4.4).

Loop dynamics at abcd:

As stated while computing dynamics at individual site,

〈j̄a1 ||a†[1]||ja1 〉 = 〈j̄b3||a†[3]||jb3〉 = Π(j1, j̄1)δj̄1,j1+ 1
2
,

〈j̄b2||a†[2]||jb2〉 = 〈j̄c4||a†[4]||jc4〉 = Π(j2, j̄2)δj̄2,j2+ 1
2
,

〈j̄c3||a†[3]||jc3〉 = 〈j̄d1 ||a†[1]||jd1〉 = Π(j3, j̄3)δj̄3,j3+ 1
2
,

〈j̄d4 ||a†[4]||jd4〉 = 〈j̄a2 ||a†[2]||ja2 〉 = Π(j4, j̄4)δj̄4,j4+ 1
2

Using the U(1) identifications and (4.12), (4.13), (4.16), (4.17) and (4.19) and merging

all these equations carefully, we get:

〈j̄abcd|TrUabcd|jabcd〉 = −δja3 ,j̄a3 δja4 ,j̄a4 δja12,j̄
a
12
δjb1,j̄b1δjb4,j̄b4δjc1,j̄c1δjc2,j̄c2δjc12,j̄

c
12
δjd2 ,j̄d2 δjd3 ,j̄d3

(−1)j
a
12+jc12(−1)j

b
1+jb4+jd2 +jd3 Π̄(j1j̄1)Π̄(j2j̄2)Π̄(j3j̄3)Π̄(j4j̄4)Π̄(jb12j̄

b
12)Π̄(jd12j̄

d
12)

{
j1 j̄1

1
2

j̄4 j4 ja12

}{
jb12 j̄b12

1
2

j̄1 j1 jb4

}{
jb12 j̄b12

1
2

j̄2 j2 jb1

}
{
j3 j̄3

1
2

j̄2 j2 jc12

}{
jd12 j̄d12

1
2

j̄3 j3 jd2

}{
jd12 j̄d12

1
2

j̄4 j4 jd3

}
(4.20)

In (4.20), Π̄(a, b) ≡ (−1)a+b+ 1
2 Π(a, b). Note that Π̄(a, b) are symmetric Π̄(a, b) = Π̄(b, a)

and real. We have ignored the 16 δ functions
∏4

i=1

(
δj̄i,ji+ 1

2
+ δj̄i,ji− 1

2

)
coming from the

reduced matrix elements in (4.8) as they are already contained in the six 6j symbols in

(4.20).

The final result can be written in a more compact form as:

〈j̄abcd|TrUabcd|jabcd〉 = Mabcd

{
j1 j̄1

1
2

j̄4 j4 ja12

}{
jb12 j̄b12

1
2

j̄1 j1 jb4

}{
jb12 j̄b12

1
2

j̄2 j2 jb1

}
{
j3 j̄3

1
2

j̄2 j2 jc12

}{
jd12 j̄d12

1
2

j̄3 j3 jd2

}{
jd12 j̄d12

1
2

j̄4 j4 jd3

}
.(4.21)
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Figure 4.4: From loop kinematics to loop dynamics. (a) The angular momenta satisfying

SU(2) Gauss law on the dual lattice, (b) The matrix elements 〈j̄abcd|TrUabcd|jabcd〉 with

X = 1
2

(also see [57]). The six tetrahedron are the six 6j symbols in (4.21). The unchanged

j lines represent the delta function and a • over a j line represents the factor (−1)jΠ(j)

leading to Mabcd in (4.21).

In (4.21), Mabcd ≡ DabcdNabcdPabcd where:

Dabcd = δja3 ,j̄a3 δja4 ,j̄a4 δja12,j̄
a
12
δjb1,j̄b1δjb4,j̄b4δjc1,j̄c1δjc2,j̄c2δjc12,j̄

c
12
δjd2 ,j̄d2 δjd3 ,j̄d3 ,

Nabcd = Π
(
j1, j̄1, j2, j̄2, j3, j̄3, j4, j̄4, j

b
12, j̄

b
12, j

d
12, j̄

d
12

)
(4.22)

Pabcd = −(−1)j1+j2+jb1+jb4(−1)j3+j4+jd3 +jd24(j̄1, j̄4, j
a
12)4(j̄2, j̄3, j

c
12)

4(j̄b12, j
b
12,

1

2
)4(j̄d12, j

d
12,

1

2
).

In (4.22), Dabcd describes the trivial δ functions over the angular momenta which do

not change under the action of the plaquette operator (4.2), Nabcd and Pabcd give the

corresponding numerical and the phase factors respectively. The multiplicity factors are:

Π(x, y, ...) ≡
√

(2x+ 1)(2y + 1)... and 4(x, y, z) represent the phase factors associated

with a triangle with sides x, y, z: 4(x, y, z) ≡ (−1)x+y+z ⇒4(x, y, z) = ±1. The matrix

elements (4.21) describe the dynamics in the loop basis (3.28) and can be geometrically

represented by the Figure (4.4b). This dynamics contains three physical discrete angular

momentum loop co-ordinates numbers per lattice site. The matrix elements (4.21) have
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been obtained3 in the context of dual description [57] of (2 + 1) dimension lattice gauge

theory in terms of triangulated surfaces. It is easy to see that the matrix elements in

(4.21) are symmetric: the 6j symbols satisfy

{
x x̄ u

ȳ y v

}
=

{
x̄ x u

y ȳ v

}
and the factors

Dabcd, Nabcd and Pabcd are individually symmetric under jabcd ↔ j̄abcd. The matrix elements

in (4.21) are also real as TrUplaquette is a Hermitian operator. This reality can again be

easily seen as the 6j symbols, Dabcd, Nabcd,4(abc) are themselves real. The remaining two

phase factors (−1)j1+j2+jb1+jb4 and (−1)j3+j4+jd2 +jd3 in Pabcd are real because (j1, j2, j
b
1, j

b
4) and

(j3, j4, j
d
3 , j

d
2) are the coordinates of the loop states at b and d respectively. Therefore,

(3.16) implies: j1 + j2 + jb1 + jb4 = Integer, j3 + j4 + jd2 + jd3 = Integer ⇒ Pabcd = ±1.

We also cross check the d = 2 result (4.21). As the six 6j symbols and the δ functions in

Dabcd are geometrical in origin, we only need to check the numerical and the phase factors

Nabcd, Pabcd respectively. For this purpose, we replace TrUabcd by the identity operator

I. Now we only have to replace 1
2

in each of the six 6j symbols in (4.21) and in Pabcd in

(4.22) by 0. Using the value

{
a ā 0

b̄ b d

}
= (−1)a+b+dδa,āδb,b̄ (Π(a, b))−1, we get:

{
j1 j̄1 0

j̄4 j4 ja12

}{
jb12 j̄b12 0

j̄1 j1 jb4

}{
ijb12 j̄b12 0

j̄2 j2 jb1

}
{
j3 j̄3 0

j̄2 j2 jc12

}{
jd12 j̄d12 0

j̄3 j3 jd2

}{
jd12 j̄d12 0

j̄4 j4 jd3

}
=
δj1,j̄1δj2,j̄2δj3,j̄3δj4,j̄4δjb12,j̄

b
12
δjd12,j̄

d
12

Nabcd Pabcd
, (4.23)

Geometrically, the equation (4.23) corresponds to putting X = 0 in the Figure (4.4b).

It implies 〈j̄abcd|I|jabcd〉 = δj̄abcd,jabcd confirming the numerical and the phase factors in

(4.21). We now write (4.21) in a more compact form which can be directly generalized to

higher dimension. Henceforth, we ignore Dabcd representing trivial δ functions in (4.21).

3Our phase factors in (4.22) are different resulting in real and symmetric matrix 〈j̄abcd|TrUabcd|jabcd〉
in (4.21).
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Figure 4.5: The 18j ribbon diagram representing exact SU(2) loop dynamics without any

spurious gauge or loop degrees of freedom in d=2. The interior (exterior) edge carries the

initial (final) angular momenta and the six bridges carry the angular momenta which are

invariant under the action of TrU�. The six bridges along with the respective four angular

momenta attached represent the six 6j symbols appearing in (4.25) with j̄i = ji ± 1
2
.

We write:

〈j̄abcd|TrUabcd|jabcd〉 = Nabcd

∑
x

(2x+ 1)(−1)r+2x

{
j1 j̄1 x

j̄4 j4 ja12

}

{
j̄4 j4 x

jd12 j̄d12 jd3

}{
jd12 j̄d12 x

j̄3 j3 jd2

}{
j̄3 j3 x

j2 j̄2 jc12

}

{
j2 j̄2 x

j̄b12 jb12 jb1

}{
j̄b12 jb12 x

j1 j̄1 jb4

} 4∏
i=1

(
δj̄i,ji+ 1

2
+ δj̄i,ji− 1

2

)
(4.24)

= Nabcd

 j1 j4 jd12 j3 j2 jb12

ja12 jd3 jd2 jc12 jb1 jb4
j̄1 j̄4 j̄d12 j̄3 j̄2 j̄b12


︸ ︷︷ ︸

18j coefficient of the second kind

4∏
i=1

(
δj̄i,ji+ 1

2
+ δj̄i,ji− 1

2

)

The 18j symbols in (4.25) are shown in (4.5). Note that Pabcd (= (−1)r+1) in (4.22) is
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precisely the phase factor needed to define 18j symbol [39] in (4.25). Further, the 12

triangular constraints in (4.25) at the 12 vertices of the ribbon diagram in Figure (4.5)

are already solved in terms of the linking numbers. Therefore it is only the value of

the 3nj = 18j (n = 6) symbol which is important. The form (4.25) also makes reality

and symmetry of 〈j̄abcd|TrUabcd|jabcd〉 manifest as 3nj symbols of second kind are real and

symmetric:  j1 j4 jd12 j3 j2 jb12

ja12 jd3 jd2 jc12 jb1 jb4
j̄1 j̄4 j̄d12 j̄3 j̄2 j̄b12



=

 j̄1 j̄4 j̄d12 j̄3 j̄2 j̄b12

ja12 jd3 jd2 jc12 jb1 jb4
j1 j4 jd12 j3 j2 jb12


Before going to arbitrary dimension, we make the following simple observation. Let

∆Nx, x = a, b, c, d denote the number of angular momenta appearing in the loop states

|jabcd〉 in (4.3) which change under the action of the plaquette operator TrUabcd at lattice

site x. In the present, d = 2, case:

∆Na = 2, (ja1 , j
a
2 ) ; ∆Nb = 3,

(
jb2, j

b
3, j

b
12

)
; ∆Nc = 2, (jc3, j

c
4) ; ∆Nd = 3,

(
jd1 , j

d
4 , j

d
12

)
.

The U(1) identification (4.4) implies double counting on each of the 4 links of the plaquette

abcd. Therefore, the number of angular momenta which change under the action of the

plaquette in the (12) plane: ∆N(12) = ∆Na + ∆Nb + ∆Nc + ∆Nd − 4 = 10− 4 = 6 = n.

This analysis will be useful to generalize the loop dynamics to arbitrary dimensions below.

4.3 d dimension

It is clear from the previous section that the loop dynamics in d dimension is also given

in terms of 3nj symbols. However, in arbitrary d dimension, n will depend on the orien-

tation of the plaquette. We will now compute n. We consider the plaquette abcd in the

(I,K), I < K plane as shown in Figure (4.6). Like in d = 2, we consider the loop states

over the plaquette abcd:

|jabcd〉 ≡ |LS〉a ⊗ |LS〉b ⊗ |LS〉c ⊗ |LS〉d (4.25)
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Figure 4.6: (a) The plaquette abcd in the (I,K) plane in d dimension. We choose

I < K, 1 ≤ I < d and 1 < K ≤ d, (b) The angular momentum addition scheme at

site x (=a,b,c,d). Note that jx1 and jx2d appear twice in the scheme. The δ functions are

subtracted in (4.26) to avoid this double counting.

where |LS〉x=a,b,c,d = |jx1 , jx2 , jx12, j
x
3 , j

x
123, ...., j

x
I , j

x
12...I , .., j

x
K , j

x
12..I..K , ...., j

x
2d−1, j

x
12..(2d−1)(=

jx2d), j
x
2d, 0〉. We now have to count the the number of angular momenta in (4.25) which

change under the action of the plaquette operator TrUabcd in the (IK) plane. With the

choice I < K (1 ≤ I < d, 1 < K ≤ d), we have:

∆Na = 2 + (K − I)− δI,1, ∆Nb = 2 + (d+ I)−K,

∆Nc = 2 + (K − I)− δK,d, ∆Nd = 2 + (d+K)− I − δI,1 − δK,d (4.26)

This implies:

∆N(IK) = ∆Na + ∆Nb + ∆Nc + ∆Nd − 4 = 2 [2 + d+ (K − I)− δI,1 − δK,d] = n(IK).(4.27)

Like in d =2 case, we have subtracted 4 in (4.27) because of U(1) gauge invariance. Note

that for d=2, ∆N(12) = 6 and for d=3, ∆N(12) = ∆N(13) = ∆N(23) = 10. The d = 3

loop dynamics is explicitly shown in Figure (4.7) where we have used the notations from

Figure (4.6a), i.e.:

(I = 1, K = 2) = (12) plane : ja1 = jb4 = j1, j
b
2 = jc5 = j2, j

c
4 = jd1 = j3, j

d
5 = ja2 = j4,

(I = 1, K = 3) = (13) plane : ja1 = jb4 = j1, j
b
3 = jc6 = j2, j

c
4 = jd1 = j3, j

d
6 = ja3 = j4,

(I = 2, K = 3) = (23) plane : ja2 = jb5 = j1, j
b
3 = jc6 = j2, j

c
5 = jd2 = j3, j

d
6 = ja3 = j4.
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Figure 4.7: The 30j ribbon diagrams representing exact SU(2) loop dynamics without

any spurious gauge or loop degrees of freedom in d=3: a) (12) plane, b) (13) plane, c)

(23) plane. The angular momenta j1, j2, j3 and j4 are as shown in Figure (4.6a). The

initial (inner) and final (outer) angular momenta differ by 1
2
.

It is clear from (4.27) that in higher (d > 3) dimension ∆N(IK) depends on the orienta-

tion of the plaquette. The corresponding 3n(I,K)j symbol describing the loop dynamics

in the above angular momentum addition scheme can be easily written down.

4.4 Summary and discussion

In this chapter, we have calculated the dynamics of the theory within the orthonormal

loop basis defined around a plaquette. The matrix element of TrUplaquette within the loop

basis comes as 3nj symbols. This result can further be used to calculate the spectrum of

the full Hamiltonian.

Having established the advantages of prepotential formulation with the illustration via

SU(2) group over the last three chapters, we now generalize this approach to SU(3) lattice

gauge theory, as SU(3) is the gauge group associated with quantum chromodynamics. We

give this generalization in the next chapter. We further generalize this novel prepotential

formulation to arbitrary SU(N) gauge group in chapter 6. It is also possible to exploit

prepotential approach in order to solve the lattice Schrödinger equation and calculate the

spectrum of the theory. We have also made progress in this direction. In chapter 7 we

explicitly solve the schroedinger equation for a small lattice analytically.



Chapter 5

Prepotential Formulation of SU(3) Lattice Gauge

Theory

We have discussed in previous chapter the new prepotential variables for SU(2) lattice

gauge theory. We have also seen how the loop state dynamics gets simplified in terms of

these prepotential operators compared to the same in terms of original Kogut-Susskind

variables for SU(2). However, at the end, we have to work with the gauge group SU(3)

to solve actual problems of QCD. As in the case of SU(2), the loop formulation of SU(3)

lattice gauge theory also suffers from the problem of non locality and proliferation of

loop states. In the last chapter the SU(2) prepotentials were shown to be useful in

formulating the theory entirely in terms of physical variables or loops. In this present

chapter we generalize this approach to SU(3) gauge group by defining and developing the

prepotential formulation to SU(3) Lattice gauge theory.

As we know earlier prepotentials are basically harmonic oscillators belonging to the

fundmental representations of the gauge group. In the context of SU(2) group theory, the

Schwinger bosons, each carrying basic (half) unit of spin angular momentum flux, provide

an explicit and simple realization of the angular momentum algebra as well as all it’s rep-

resentations [33]. In particular, the Hilbert space created by the two Schwinger oscillators

is isomorphic to the space of SU(2) irreps. Thus the Schwinger boson representation of

SU(2) group is simple, economical as well as complete. However, all these features are lost

when we generalize the Schwinger boson construction to SU(N) with N ≥ 3. The origin

of these problems is the existence of certain SU(N) invariants which can be constructed

for N ≥ 3. Any two states which differ by the overall presence of such an invariants

54
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will transform in the same way under SU(N) gauge transformation. This leads to the

problem of multiplicity which in turn makes the formulation of SU(N) (N ≥ 3) much

more involved compared to SU(2). To understand this fact let us consider the Schwinger

boson representation for SU(3) explicitly. Being rank two group two fundamental irrep

of SU(3), namely the a†α ∈ 3 and b†α ∈ 3∗ are necessary to construct all possible irreps of

SU(3). Now we can see that a† · b† as well as a · b are SU(3) invariant. Hence for any irrep

|R〉 of SU(3) should be identified with |R, ρ〉 for any ρ, where,

|R, ρ〉 ≡ (a† · b†)ρ︸ ︷︷ ︸
SU(3) singlet

|R〉 (5.1)

for ρ = 0, 1, 2, . . . ,∞. Note that, this degeneracy problem did not exist for SU(2) as there

is only one (2 ≡ 2∗) fundamental representation of SU(2). However this group gauge de-

generacy can be solved by solving the group theoretic Gauss law constraint a · b ' 0 [34].

The degree of degeneracy increases with N for gauge group SU(N) leading to more and

more complicated Schwinger boson representation of SU(N). These issues have also been

extensively addressed in the past [19,30,40,41]. In the context of SU(3) Schwinger boson

analysis, a systematic group theoretic procedure based on noncompact group Sp(2,R) is

given in [40] to label the multiplicity of SU(3). In this work, exploiting this Sp(2,R) label-

ing in [40], we define irreducible SU(3) Schwinger bosons in terms of which construction

of SU(3) irreducible representations are as simple as SU(2). Further like in SU(2) case,

the representations in terms of irreducible Schwinger bosons are multiplicity free.

We identify this new set of irreducible Schwinger bosons for SU(3) as the irreducible

prepotential operators to formulate the SU(3) lattice gauge theory entirely in terms of

these irredicible prepotentials. In this chapter we show how the irreducible prepotentials

are constructed from the group theoretic properties. We also construct the conventional

variables, the electric field and link operator in terms of prepotentials. We also show that

the prepotentials being located at the end of each link, enables one to construct physical

states locally at each site. The Mandelstam constraints can also be cast in its local form.
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Figure 5.1: The SU(3) prepotentials and the two U(1)⊗ U(1) oriented abelian flux lines

along a link l in SU(3) lattice gauge theory. The directions of abelian flux lines are chosen

from quarks a† ∈ 3 prepotentials to anti-quark b† ∈ 3∗ prepotentials transforming like

triplet and ant-itriplet respectively.

5.1 Prepotentials in SU(3) lattice gauge theory: Definition and

Construction

Like in SU(2), the SU(3) prepotentials are defined through the left and right electric fields

in SU(3) lattice gauge theory. As stated earlier, being a group of rank two, SU(3) has

two fundamental representations 3 (triplet) and 3∗ (anti-triplet) which are independent.

Hence we associate two independent harmonic oscillator prepotential triplets:

a†α(l, L), b†α(l, L), α = 1, 2, 3

to the left end and

a†α(l;R), b†α(l;R), α = 1, 2, 3

to the right end of the link l ≡ (n, i). Now there are 12 prepotential operators associated

with every link. These assignments are shown in Figure 5.1. Under SU(3) gauge transfor-

mation in a d dimensional spatial lattice, the 2d a†s and 2d b†s on the 2d links emanating

from the lattice site n transform as quarks (3) and anti-quarks (3∗) respectively. The

SU(3) electric fields are related to the prepotentials as:

Left electric fields: Ea
L(l) =

(
a†(l, L)

λa

2
a(l, L)− b(l, L)

λa

2
b†(l, L)

)
Right electric fields: Ea

R(l) =

(
a†(l, R)

λa

2
a(l, R)− b(l, R)

λa

2
b†(l, R)

)
(5.2)

In (5.2), we have used Schwinger boson construction of SU(3) Lie algebra [45, 59]. Note

that the second part of the each of these definition is −bλa

2
b† instead of b† λ̃

a

2
b where, λ̃
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is the dual representation of λ as we have used the relation λ̃ = −λT . The electric field

generators in (5.2) generate SUL(3) ⊗ SUR(3) gauge transformations on every link. The

Electric field operators defined in (5.2) also satisfy the rigit rotator constraint (2.6), i,e

8∑
a=1

Ea
L(l)Ea

L(l) =
8∑

a=1

Ea
R(l)Ea

R(l). (5.3)

The prepotential triplets satisfy the standard harmonic oscillator commutation relations:[
aα(l, s), a†β(l, s′)

]
= δαβ δs,s′ ,

[
bα(l, s), b†β(l, s′)

]
= δβαδs,s′[

aα(l, s), aβ(l, s′)
]

= 0 ,
[
bα(l, s), bβ(l, s′)

]
= 0, s, s′ = L,R. (5.4)

As all the electric fields in (5.2) involve both creation and annihilation operators, the

number operators in (5.5) commute with all the electric fields in (5.2). Therefore, the two

SU(3) Casimirs on each side of the link l are:

N̂(l, L) = a†(l, L) · a(l, L), M̂(l, R) = b†(l, R) · b(l, R),

M̂(l, L) = b†(l, L) · b(l, L), N̂(l, R) = a†(l, R) · a(l, R). (5.5)

The eigenvalues of N̂(L), M̂(L) and N̂(R), M̂(R) will be denoted by nL,mL and nR,mR

respectively. We can characterize all the SU(3) irreducible representations on a link by

(nL,mL) ⊗ (nR,mR). Under the SU(3) gauge transformations, the prepotentials on the

left and right side of a link l transform as:

a†α(l, L)→ a†β(l, L)
(
Λ†L
)β

α, a†α(l, R)→ a†β(l, R)
(
Λ†R
)β

α

b†α(l, L)→
(
ΛL

)α
βb
†β(l, L), b†α(l, R)→

(
ΛR

)α
βb
†β(l, R) (5.6)

The above transformations imply that under SU(3) gauge transformations a†α(l, L), a†α(l, R)

transform like quarks and b†α(l, L), b†α(l, R) transform like anti-quarks at the left and the

right end of the link l respectively. Therefore, we call a, a† and b, b† on various links as

quark and anti quark prepotentials respectively. Note that, under SU(3) gauge transfor-

mation Kogut-Susskind link operator transforms as,

Uα
β(l)→ Λα

γ(l, L)Uγ
δ(l)Λ†δ(l, R)β. (5.7)

We will see in the next sections that the prepotentials in (5.2) enable us to disentangle

the left and right SU(3) gauge flux formation.
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5.2 The additional U(1)⊗ U(1) gauge invariance

Like in SU(2) case , the defining equations of SU(3) prepotentials (5.2) on link l are

invariant under the following U(1)⊗ U(1)⊗ U(1)⊗ U(1) abelian gauge transformations:

a†α(l, L)→ eiθ(l,L)a†α(l, L), b†α(l, R)→ e−iθ(l,R)b†α(l, R),

b†α(l, L)→ eiφ(l,L)b†α(l, L), a†α(l, R)→ e−iφ(l,R)a†α(l, R) (5.8)

In (5.8), the abelian gauge angles θ(l, s) and φ(l, s) with s = L,R are defined on the left

and right sides of every link. Again like in SU(2) case, the Hilbert space of lattice gauge

theory is built by applying the link operators on the vacuum state:

Uα1
β1(l) Uα2

β2(l) · · ·Uαn
βn(l)|0〉 (5.9)

and then symmetrizing/anti-symmetrizing α indices according to a certain Young tableau.

However, this symmetrizing/anti-symmetrizing the left α(∈ 3) indices automatically in-

duces the same symmetries/anti-symmetries on the right β(∈ 3∗) indices. This implies

that the left and right representations are always conjugate to each other1, i.e:

N̂(l, L) ' M̂(l, R), M̂(l, L) ' N̂(l, R), (5.10)

where ' denotes that it is true acting on the states created by the action of link operators

on vacuum. This implies that within the Hilbert space created by the link operators in

(5.9), θ(l, L) = θ(l, R) and φ(l, L) = φ(l, R) is true on every link l. A trivial example is

the state |βα〉 ≡ Uα
β(l)|0〉 which transform as 3-plet on the left and 3∗-plet on the right.

The next irreducible state |β1β2
α1α2
〉 ≡

(
Uα1

β1(l)Uα2
β2(l) + Uα2

β1(l)Uα1
β2(l)

)
transforms as 6

at left and 6∗ at right of the link l. Note that, the normalization of these states are

nontrivial as it carries all the symmetrization as well as antisymmetrization of the α and

β indices. These same states (according to the transformation properties) are realized in

terms of prepotential operators as:

|βα〉 ≡ a†α(l, L)b†β(l, R)|0〉 , |β1β2
α1α2
〉 ≡ a†α1

(l, L)a†α2
(l, L)b†β1(l, R)b†β2(l, R)|0〉. (5.11)

It is evident in (5.11) that the (5.10) is true. Therefore, besides SU(3) gauge invariance

at different lattice sites, the prepotential formulation has additional abelian U(1)⊗ U(1)

1We will analyze the consequences of E2
L(n, i) = E2

R(n+ i, i) in the next section.



Chapter 5. Prepotential Formulation of SU(3) Lattice Gauge Theory 59

gauge invariance (5.8) on every link. The abelian Gauss law constraints (5.10) imply

oriented abelian fluxes for SU(3) unlike the unoriented ones for SU(2) as in this case there

exist more than one (triplet and anti-triplet) type of fundamental representation attached

to each end of the link. Hence it is necessary to choose a convention of the abelian Gauss

law flow in order to express it clearly. We choose the directions of the abelian fluxes on

links to be from quark to anti quark prepotentials. To maintain continuity of direction

in a loop state the non-abelian fluxes are chosen in the opposite direction (i.e, from anti

quark prepotentials to quark prepotentials). These conventions are clearly illustrated on

a link in Figure 5.1 and Figure 5.2.

5.3 The SU(3) prepotential Hilbert space Hp on a link

Likewise the SU(2) case, the Hilbert space of SU(3) prepotential operators Hp can be

completely characterized by the following basis on every lattice link l (we supress the link

index l as long as we consider only one link at a time):

|β1β2···βq
α1α2···αp〉L ⊗ |

δ1δ2···δp
γ1γ2···γq〉R ≡ L̂ β1β2···βq

α1α2···αp |0〉L ⊗ R̂
δ1δ2···δp
γ1γ2···γq |0〉R

≡ |p, q〉L ⊗ |q, p〉R (5.12)

In (5.12),

|p, q〉L = L̂β1β2···βq
α1α2···αp |0〉L ≡ a†α1

(L) · · · a†αp(L)b†β1(L) · · · b†βq(L)|0〉L, (5.13)

and

|q, p〉R = R̂δ1δ2···δp
γ1γ2···γq |0〉R ≡ a†γ1

(R) · · · a†γq(R)b†δ1(R) · · · b†δp(R)|0〉R (5.14)

are the states created by the SUL(3)⊗ SUR(3)⊗ U(1)⊗ U(1) flux creation operators on

the left and right vacuum at respective ends of every link. We have used the U(1)⊗U(1)

Gauss law constraints (5.10) in (5.12) with nL = mR = p and mL = nR = q.

Note that unlike SU(2) flux creation operators (2.16) which were SU(2) irreducible,

the flux operators in (5.12) which creates the states in prepotential Hilbert space are

SU(3) reducible. To construct the SU(3) irreducible states at each end of the link the

prepotentials need to be properly symmetrized and antisymmetrized as the SU(3) irrep
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must be symmetric in all upper as well as lower indices, and must be antisymmetric

between upper and lower indices. Note that this symmetrization was inbuilt for SU(2)

as that have only one type of indices which were already symmetric as all the Schwinger

bosons commute amongst themselves. The same is true for symmetric or pure SU(3)

irreps, like (p, 0) and (0, p). The symmetric representations of SU(3) are created out of

only one fundamental irrep, either 3 or 3∗. Therefore, as far as symmetric representations

of SU(3) are concerned, each single (double) Young tableau box represents a Schwinger

boson creation operator a† ∈ 3
(
b† ∈ 3∗

)
. Hence the symmetric SU(3) irreps at both the

ends of a link are :

|p, 0〉L = L̂α1α2···αp |0〉L ≡ a†α1
(L) · · · a†αp(L)|0〉L,

|0, p〉R = R̂β1β2···βp |0〉R ≡ b†β1(R) · · · b†βp(R)|0〉R (5.15)

In (5.15) the states created by the SUL(3)⊗SUR(3)⊗U(1)⊗U(1) flux creation operators

on the left and right vacuum at respective ends of every link. Moreover this flux creation

operators are symmetric as a†’s and b†’s commute among themselves. Hence the states

|p, 0〉L and |0.q〉R are indeed irreducible representation of SU(3) and are equivalent to a

row of p number of single boxes and a row of p number of double boxes respectively.. This

construction is simple and retain the simplicity of SU(2). However, this simplicity is lost

when we consider mixed representations (p 6= 0, q 6= 0). As stated earlier, the states in

(5.13) and (5.14) are SU(3) reducible. The irreducible representation states in (p, q) irrep.

are given by [30]:

|ψ〉α1,α2,...αp
β1,β2,...,βq

≡
[
O
α1α2...αp
β1β2...βq

+ L1

p∑
l1=1

q∑
k1=1

δ
αl1
βk1
O
α1α2..αl1−1αl1+1..αp
β1β2..βk1−1βk1+1...βq

+L2

p∑
(
l1,l2
=1 )

q∑
(
k1,k2
=1 )

δ
αl1αl2
βk1

βk2
O
α1..αl1−1αl1+1..αl2−1αl2+1..αp
β1..βk1−1βk1+1..βk2−1βk2+1..βq

+L3

p∑
(
l1,l2
l3=1)

q∑
(
k1,k2
k3=1 )

δ
αl1αl2αl3
βk1

βk2
βk3
O
α1..αl1−1αl1+1..αl2−1αl2+1..αl3−1αl3+1..αp
β1..βk1−1βk1+1..βk2−1βk2+1..βk3−1βk3+1...βq

(5.16)

...

+Ln

p∑
l1..ln=1

q∑
k1..kn=1

δ
αl1αl2 ..αln
βk1

βk2
..βkn

O
α1α2..αl1−1αl1+1..αl2−1αl2+1..αln−1αln+1..αp
β1β2..βk1−1βk1+1..βk2−1βk2+1..βkn−1βkn+1...βq

]
|0〉
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Figure 5.2: The graphical interpretation of the SU(3)⊗U(1)⊗U(1) gauge invariant loop

state (5.18) over a link (n, i) with nL = nR = n = 1. The “magnetic” Sp(2,R) quantum

number ρ of this state is non zero (ρ = 1) and therefore such states can not be created

by the link operators U(n, i). Two types of arrows are used to differentiate abelian and

non-abelian fluxes.

where O ≡ L̂(R̂) which are defined in (5.13) and (5.14). The limit in the sum n =

min(p, q), δα1α2..αr
β1β2...βr

≡ δα1
β1
δα2
β2
. . . δαrβr and all the sums in (5.16) are over different indices, i.e,

l1 6= l2... 6= ln and k1 6= k2... 6= kn. The coefficients Lr are given by [59]:

Lr ≡
(−1)r (a† · b†)r

(p+ q + 1)(p+ q)(p+ q − 1)...(p+ q + 2− r)
. (5.17)

The coefficients in (5.17) are chosen to make the state completely traceless in all possible

pairs of upper and lower indices. Note that all the upper (lower) indices are completely

symmetric by construction as the Schwinger bosons commute amongst themselves.

The non-triviality with the mixed irreps (i.e constructed out of two fundamental irreps)

arises due to the existence of certain SU(3)invariant operators. To understand the problem

clearly, let us consider the following SU(3) gauge invariant state as an example:

|ρL, ρR〉 ≡
(
a†(L) · b†(L)

)ρL(
a†(R) · b†(R)

)ρR
|0〉. (5.18)

The states (5.18) are also invariant under U(1) ⊗ U(1) gauge transformations (5.8) if

ρL = ρR = ρ with ρ = 0, 1, 2, ...,∞. The state (5.18) with ρ = 1 is shown in Figure 5.2.

The gauge invariant states (5.18) are linear combinations of states in (5.12):

|ρ〉 ≡ |ρL = ρ, ρR = ρ〉 =
∑

{αi}i=1,..,ρ

|α1α2···αρ
α1α2···αρ〉L ⊗

∑
{βi}i=1,..,ρ

|β1β2···βρ
β1β2···βρ〉R. (5.19)
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However, the gauge invariant states in pure lattice gauge theories are the Wilson loop

states residing around the plaquettes and not on the links . The only gauge invariant oper-

ator on a link l constructed out of the link operator is a constant operator {Tr(U †(l)U(l)) =

Tr (U(l)U †(l)) = 3}. In other words, the infinite towers of gauge invariant states (5.18)

on different links do not exist in the lattice gauge theory. In fact, this issue of “non

gauge theory states” in the prepotential Hilbert space Hp is related to the well known

multiplicity problem in the direct products of SU(3). Actually, the states in (5.12) are

not the states in the gauge theory Hilbert space, but no doubt are states in the Prepo-

tential Hilbert space. Unlike SU(2) case (2.17), the SU(3) gauge theory Hilbert space Hg

is contained in Hp:

Hg ⊂ Hp. (5.20)

Therefore, we now need projection operators to go from Hp to Hg such that the states in

Hg are free from any spurious gauge invariant degrees of freedom. Hence the gauge theory

Hilbert space, constructed out of the prepotentials must be free from this multiplicity

problem. This makes SU(3) prepotential analysis slightly more involved than SU(2). In

the next section we discuss the multiplicity problem for SU(3) reprresentation theory in

detail.

5.3.1 The multiplicity problem in SU(3)

Note that the basis (5.12) in Hp is obtained by taking two direct products. The states

L̂
β1β2···βq
α1α2···αp|0〉L and R̂

δ1δ2···δp
γ1γ2···γq |0〉R are individually direct products of quark and anti-quark

irreducible representations: (nL = p, 0)L ⊗ (0,mL = q)L and (nR = q, 0)R ⊗ (0,mR = p)R

respectively. Therefore, they can be further reduced using the SU(3) Clebsch Gordan

series into irreps. of SUL(3) and SUR(3) respectively:

(nL = p, 0)L ⊗ (0,mL = q)L =

min(p,q)∑
ρ(L)=0

⊕ (p− ρ(L), q − ρ(L))L︸ ︷︷ ︸
HLp (p−ρ(L),q−ρ(L),ρ(L))

,

(nR = q, 0)R ⊗ (0,mR = p)R =

min(p,q)∑
ρ(R)=0

⊕ (q − ρ(R), p− ρ(R))R︸ ︷︷ ︸
HRp (q−ρ(R),p−ρ(R),ρ(R))

, (5.21)
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where, Hs
p(p−ρ(s), q−ρ(s), ρ(s)), for s = L/R, denotes the Hilbert space of states (Young

tableaues) constructed out of total p numbers of triplets (single boxes) and q numbers

of anti-triplets (double boxes), out of which ρ numbers have combined to form singlet

(column of double boxes). Hence, the states in Hs
p(p − ρ(s), q − ρ(s), ρ(s)) transform as

(p− ρ(s), q − ρ(s)) irrep of SU(3). An explicit example of (5.21) on a side s = L/R of a

link with p = 1 and q = 1 is as follows:

a†α(s)|0〉 ⊗ b†β(s)|0〉 ≡ a†α(s)b†β(s)|0〉 =

(
a†α(s)b†β(s)− 1

3
δβα(a † (s) · b†(s))

)
|0〉︸ ︷︷ ︸

(1−0,1−0)∈Hsp(1,1,0)

+
1

3
δβα(a†(s) · b†(s))|0〉︸ ︷︷ ︸
(1−1,1−1)∈Hsp(0,0,1)

(5.22)

Under SU(3) gauge transformations, the vectors in Hs
p(p, q, ρ) transform as (p, q)s irre-

ducible representation of SUs(3) independent of the value of ρ (= 0, 1, · · · ,∞) leading to

infinite multiplicity for each state. While the gauge theory Hilbert space Hg must always

have ρ = 0 as the SU(3) invariant operators can never be created on a link by the action

of Wilson loops as long as the vacuum is in Hs
p(p, q, ρ = 0). Hence the gauge theory

Hilbert space must be free from all sorts of multiplicity and should be exactly identified

with Hs
p(p, q, ρ = 0). We discuss the gauge theory hilbert space in detail in section 5.5.

The multiplicities associated with direct product representations of SU(3) have been

extensively studied and classified in [40]. Following [40], the prepotential Hilbert space

present at each side of a link can be subdivided into a set of irreducible Hilbert spaces

each carrying all the irreps of SU(3). That is,

Hs
p(p, q) =

min(p,q)∑
ρ=0

Hs
p(p− ρ(s), q − ρ(s), ρ(s)), s = L,R

Hence, the complete prepotential Hilbert space for lattice gauge theory can be classified

as:

Hp =
∏
⊗link

{
Hp

}
link

=
∏
⊗link

{ ∞∑
ρ=0

∞∑
p,q=0

(
HL
p (p, q, ρ)⊗HR

p (q, p, ρ)
)}

link

≡
∏
⊗link

{ ∞∑
ρ=0

Hp(ρ)
}
link

. (5.23)
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5.4 The SU(3) invariant SpL(2, R)× SpR(2, R) algebra

Following [40], the multiplicity problem of SU(3) can be analyzed systematically with the

introduction of the SU(3) invariant Sp(2,R) algebra. This analysis will enable us to solve

the multiplicity problem and to identify the gauge theory Hilbert space at each end of a

link on the lattice.

In order to identify the gauge theory Hilbert spaceHg in (5.23), we define the following

three color neutral operators on each side s = L/R of every link:

k−(s) ≡ a(s) · b(s), k+(s) ≡ a†(s) · b†(s),

k0(s) ≡ 1

2

(
a†(s) · a(s) + b†(s) · b(s) + 3

)
, s ≡ L,R. (5.24)

These SU(3) color neutral operators satisfy the Sp(2,R) algebra on both sides of the link:

[k0(s), k±(s′)] = ±δs,s′k±(s), [k−(s), k+(s′)] = 2δs,s′k0(s), s, s′ ≡ L,R. (5.25)

Further, as these Sp(2,R) generators are invariant under SU(3) transformations, they

commute with the color electric fields. In other words:

[SpL(2, R)⊗ SpR(2, R), SUL(3)⊗ SUR(3)] = 0. (5.26)

Therefore, the Hilbert space of SU(3) lattice gauge theory can be completely and uniquely

labeled by SUL(3) ⊗ SpL(2, R) ⊗ SUR(3) ⊗ SpR(2, R) quantum numbers on every link.

Consequently the SU(3) irreps constructed out of prepotentials at each end of the link

must also be the irreps of Sp(2,R) located at that end of the link.

At the s(≡ L/R) end of the link the positive discrete irreps of Sps(2, R) (only which

are of our interest) are characterized by the normalized state:

|k,m〉s with, k = 1/2, 1, 3/2, .... & m = k, k + 1, k + 2, ....

where, [
1

2
(k+k− + k−k+)− k2

0

]
|k,m〉 = k(1− k)|k,m〉 (5.27)

k0(s)|k,m〉s = m|k,m〉s (5.28)

k±(s)|k,m〉s =
√

(m± k)(m∓ k ± 1)|k,m± 1〉s (5.29)
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It follows from (5.29), after a few steps of algebra that:

|k,m〉s =

√
(2k − 1)!

(m− k)!(m+ k − 1)!
(k+(s))m−k |k, k〉s (5.30)

& k−(s)|k, k〉s = 0. (5.31)

As the generators of Sp(2,R) and SU(3) are mutually commuting, they must have a

common set of eigenstates. Let us explicitly consider the state constructed in (5.16)

which is an SU(3) irrep. One can explicitly check that the state |ψ〉α1...αp
β1...βq

in (5.16) satisfy

the relation:

k−|ψ〉α1...αp
β1...βq

= 0 (5.32)

Now, this state must also be an irrep of Sp(2,R). To characterize the same state with

Sp(2,R) quantum numbers, we calculate,

k0|ψ〉α1...αp
β1...βq

=
1

2
(p+ q + 3)|ψ〉α1...αp

β1...βq
(5.33)[

1

2
(k+k− + k−k+)− k2

0

]
|ψ〉α1...αp

β1...βq
=

[
1

2
[k−, k+]− k2

0

]
|ψ〉α1...αp

β1...βq

=

[
1

2
(p+ q + 3)− 1

4
(p+ q + 3)2

]
|ψ〉α1...αp

β1...βq

=
1

2
(p+ q + 3)

(
1− 1

2
(p+ q + 3)

)
|ψ〉α1...αp

β1...βq
(5.34)

using the definition in (5.24). Now comparing (5.33) with (5.28) and (5.34) with (5.27),

we identify:

|k, k〉 ≡ |ψ〉α1...αp
β1...βq

. (5.35)

Hence the states |ψ〉α1...αp
β1...βq

lie in the Hilbert space Hp(p, q, 0). Similarly we also find that

the states

(a† · b†)ρ|ψ〉α1...αp
β1...βq

≡ |k,m〉

lying in Hp(p, q, ρ) with k = 1
2
(p+ q + 3) and m = k + ρ.

Coming back to the states in the prepotential Hilbert space Hs
p(p− ρ, q− ρ, ρ) on the

s end of the link, they are as well the irreps of Sps(2, R) and hence the eigenvalue of k0(s)

on any state of this Hilbert space is 1/2(p + q + 3). Hence, acting on the Hilbert space
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Hs
p(p, q, ρ) in (5.23), k0(s) must have the eigenvalue 1/2(p+ρ+q+ρ+3) = 1/2(p+q+3)+ρ.

Thus the states in the sub spaces of the full prepotential Hilbert space defined in (5.23)

are with the following Sp(2,R) quantum numbers:

m =
1

2
(p+ q + 3) + ρ, ρ = 0, 1, ...∞ (5.36)

Since the allowed values of m for a given k in an Sp(2,R) irrep are k, k + 1, k + 2, ....., we

can identify the SU(3) irreps in Hs
p(p, q, ρ) with k = 1

2
(p+ q+ 3). Hence the states |k,m〉s

can be equivalently characterized as |k, ρ〉s ≡ |p, q, ρ〉s which are again irreps of SUs(3).

Since the sum of the numbers of triplet and anti triplets are same at both the ends

of a link (5.21), we get [40]: k = k(L) = k(R) = 1
2
(p + q + 3). Further ρ(L) = ρ(R) = ρ

appearing in (5.21) are the “magnetic quantum numbers” of SpL(2, R)⊗ SpR(2, R). The

raising (lowering) k+(s)(k−(s)) operators increase (decrease) the Sp(2,R) magnetic fluxes

[40]:

|HL
p (p, q, ρ± 1)〉L = k±(s) |HL

p (p, q, ρ)〉, |HR
p (q, p, ρ± 1)〉R = k±(R) |HR

p (q, p, ρ)〉R,(5.37)

Again one can see that using the λ matrix identity:
∑8

a=1

(
λa

2

)α
β

(
λa

2

)γ
σ

= 1
2
δασδ

γ
β− 1

6
δαβ δ

γ
σ,

the squares of left and right electric fields can be written as:

8∑
a=1

Ea
L(n, i)Ea

L(n, i) = N̂(L)

(
N̂(L)

3
+ 1

)
+ M̂(L)

(
M̂(L)

3
+ 1

)
− k+(L)k−(L) +

1

3
N̂(L)M̂(L)

8∑
a=1

Ea
R(n, i)Ea

R(n, i) = N̂(R)

(
N̂(R)

3
+ 1

)
+ M̂(R)

(
M̂(R)

3
+ 1

)
−k+(R)k−(R) +

1

3
N̂(R)M̂(R).

The electric field constraints (2.6) along with the U(1)⊗U(1) Gauss law constraints (5.10)

imply:

k+(L)k−(L) = k+(R)k−(R). (5.38)

On the other hand, the action of k+k− on a general Sp(2,R) irrep. |k,m〉 is given by [40]:

k+k−|k,m〉 = (m− k)(m+ k − 1)|k,m〉, (5.39)
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where, m = k+ρ. In the present case the electric field constraint (5.38) and the eigenvalue

equation (5.39) imply:

(m(L)− k(L)) (m(L) + k(L)− 1) = (m(R)− k(R)) (m(R) + k(R)− 1) . (5.40)

As k(L) = k(R) = 1
2
(p+ q + 3), we get the unique solution of (5.40):

ρL(l) = ρR(l). (5.41)

Therefore, in the prepotential Hilbert space Hp the left and the right Sp(2,R) “magnetic”

quantum numbers are same on every link.

Note that, in particular, the ρ = 0 Hilbert space without any “Sp(2,R) magnetic” flux

in (5.21) is annihilated by k−:

k−(L) |HL
p (p, q, ρ = 0)〉 = 0, k−(R) |HR

p (q, p, ρ = 0)〉 = 0. (5.42)

The equations (5.37) show that the “spurious gauge invariant” states in (5.18) are the vec-

tors of one dimensional mutually orthogonal SU(3) invariant Hilbert spaces HL
p (0, 0, ρ)⊗

HR
p (0, 0, ρ) with ρ = 1, · · ·∞. The strong coupling vacuum is the ρ = 0 vacuum.

5.5 The SU(3) gauge theory Hilbert space Hg

The various flux states in gauge theory Hilbert space Hg are created by the link matrices

Uα
β acting on the strong coupling vacuum as in (2.10). Therefore, in order to identify Hg

withinHp with Sp(2,R) structure (5.23), we now analyze the Sp(2,R) properties of the link

operators in this section. We note that the link matrix Uα
β can not change the Sp(2,R)

magnetic quantum number ρ. As shown at the bottom of Figure 5.2, k+(L) = a†(L) ·b†(L)

and k+(R) = a†(R) · b†(R) correspond to three Young tableau boxes in a vertical column

(SU(3) singlets) on the left and right side of the links respectively. On the other hand, in

terms of the link operators, this left and right anti-symmetrization on a link corresponds

to: 1
3!
εα1α2α3ε

β1β2β3Uα1
β1U

α2
β2U

α3
β3 = det U ≡ 1 or tr (UU †) = 3. Therefore, the states

in Hg, obtained by applying link operators on the strong coupling vacuum with ρ = 0

(k−(l)|0〉l = 0, l = L,R) will also carry ρ = 0 quantum numbers. In other words, they

too will be annihilated by k−(l):

k−(L)
(
Uα1

β1U
α2
β2 · · ·Uαr

βr

)
|0〉 = 0, k−(R)

(
Uα1

β1U
α2
β2 · · ·Uαr

βr

)
|0〉 = 0. (5.43)
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Therefore, going back to the classification of Hp in (5.23), we identify:

Hg ≡
∏
⊗link

{
Hp(ρ = 0)

}
link
≡ H0

p. (5.44)

like in the case of SU(2) lattice gauge theory. In (5.44) Hg denotes ρ = 0 subspace of

Hp satisfying k−|ψ〉 = 0 for |ψ〉 ∈ Hg. An example of |ψ〉 ∈ Hg is the state given in

(5.16) which reduces to the state
(
a†α(s)b†β(s)− 1

3
δβα(a†(s) · b†(s))

)
|0〉 with s = L/R for

p = 1, q = 1. Thus the kernel of (k−(L)k−(R)) in Hp is the SU(3) gauge theory Hilbert

space Hg. Further, (5.43) implies:

[k−(L), Uα
β] ' 0, [k−(R), Uα

β] ' 0, (5.45)

In other words, k−(L) and k−(R) weakly commute with the link operators of SU(3) lattice

gauge theory2. The symbol ' in (5.45) implies that the commutators are zero only when

they are applied on the vectors belonging to the gauge theory Hilbert space Hg ≡ H0
p.

We would now like to write the link operators in terms of SU(3) prepotential operators

which create SU(3) fluxes only in the gauge theory Hilbert space Hg. This is done in the

next section.

5.6 SU(3) irreducible prepotential operators: Construction

In this section, we construct the SU(3) irreducible prepotential operators from the prepo-

tential operators in (5.2) such that they directly create SU(3) irreducible fluxes exactly

like in SU(2) case (2.16). This construction with all the it’s group theoretical details is

obtained in [34]. We define the SU(3) irreducible prepotential operators from prepotential

operators such that:

1. they have exactly the same SU(3)⊗ U(1)⊗ U(1) quantum numbers,

2. they commute with the Sp(2,R) destruction operator k−.

As a result, acting on the strong coupling vacuum they directly create the gauge theory

Hilbert space Hg completely bypassing the problem of spurious states like (5.18) in Hp.

2Note that all the electric fields strongly commute with the Sp(2,R) generators (5.26).
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we define SU(3) irreducible prepotentials [34] as:

A†α(L) = a†α(L) + FL k+(L)bα(L), A†α(R) = a†α(R) + FR k+(R)bα(R),

B†α(L) = b†α(L) + FLk+(L)aα(L), B†α(R) = b†α(R) + FLk+(R)aα(R).(5.46)

In (5.46), A†α(L/R) are the triplets and B†α(L/R) are the anti-triplets. The factors FL

and FR are given by:

FL = − 1

N(L) +M(L) + 1
, FR = − 1

N(R) +M(R) + 1
. (5.47)

These factors are chosen so that [34]:[
k−(s), A†α(s)

]
' 0;

[
k−(s), B†α(s)

]
' 0. (5.48)

for s = L,R. Taking dagger of the operators defined in (5.46) yields,

Aα(s) ' aα(s) & Bα(s) ' bα(s) (5.49)

for s = L,R, acting on Hg. To get (5.49) from (5.46), we have used k− ' 0. From (5.49),

k−(s) ≡ A(s) ·B(s) ' a(s) ·b(s), implies that the annihilation operators in (5.49) strongly

commute with k−(s).

This restriction (of weakly commuting) in (5.48) is made in order to obtain the traceless

states (as in 5.16) only constructed by the action of these new operators on Hg. In other

words, for a state |ψ〉 ∈ Hg,

k−|ψ〉 ∈ Hg = 0 ⇒ k−
(
A†α|ψ〉 ∈ Hg〉

)
= 0 & k−

(
B†α|ψ〉 ∈ Hg〉

)
= 0 (5.50)

Using (5.46) and (5.47), it is easy to check that the irreducible Schwinger boson creation

operators commute amongst themselves 3[
A†α(s), A†β(s′)

]
= 0,

[
B†α(s), B†β(s′)

]
= 0,

[
A†α(s), B†β(s′)

]
= 0. (5.52)

3The other commutation relations acting on the SU(3) irreps. are [34]:[
Aα(s), A†β(s′)

]
' δss′

(
δβα −

1
N(s) +M(s) + 2

B†α(s)Bβ(s)
)

[
Aα(s), B†β(s′)

]
' − δss′

1
N(s) +M(s) + 2

B†α(s)Aβ(s) (5.51)

[
Bα(s), B†β(s′)

]
' δss′

(
δαβ −

1
N(s) +M(s) + 2

A†α(s)Aβ(s)
)
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By construction, A†α(s) and B†α(s) transform exactly like a†α(s) and b†α(s), s = L,R

under SU(3) ⊗ U(1) ⊗ U(1) and retain the same quantum numbers. Therefore, we can

now define:

|β1β2···βq
α1α2···αp〉

0
L ⊗ |δ1δ2···δpγ1γ2···γq〉

0
R ≡ L̂ β1β2···βq

α1α2···αp |0〉L ⊗ R̂
δ1δ2···δp
γ1γ2···γq |0〉R (5.53)

where |0〉L/R are the strong coupling vacuum located at left and right end of a link as

defined earlier. In (5.53), the additional Sp(2,R) quantum numbers ρL = ρR = 0 are put

as superscript 0. The operators L and R are defined by replacing SU(3) prepotentials in

L and R in (5.12) by the corresponding SU(3) irreducible prepotentials in (5.46), i.e.,

L̂β1β2···βq
α1α2···αp|0〉L ≡ A†α1

(L) · · ·A†αp(L)B†β1(L) · · ·B†βq(L)|0〉L,

and

R̂δ1δ2···δp
γ1γ2···γq |0〉R ≡ A†γ1

(R) · · ·A†γq(R)B†δ1(R) · · ·B†δp(R)|0〉R.

In other words, the operators L and R in (5.53) are SU(3) irreducible unlike the L

and R operators in (5.12) which are reducible according to (5.21). It can be shown that L
and R are related to L and R by projection operators. In fact, these SU(3) flux creation

operators L and R are the SU(3) analogues of the SU(2) flux creation operators L and

R in (2.16) as both create irreducible fluxes. Further, like in SU(2) case, they bypass the

problem of symmetrization and anti symmetrization associated with the link operators.

This is because L̂ and R̂ in (5.53) are defined in terms of SU(3) irreducible prepotential

operators which have all the symmetries of SU(3) Young tableauex inbuilt [34]. In other

words the role played by SU(2) prepotentials in SU(2) lattice gauge theory is exactly

equivalent to the role played by SU(3) irreducible prepotentials in SU(3) lattice gauge

theory.4

Note that in terms of SU(3) irreducible prepotentials, the “spurious gauge invariant

states” like in (5.18) or (5.19) do not exist as:

A†(L) ·B†(L)|0〉L ≡ 0, A†(R) ·B†(R)|0〉R ≡ 0. (5.54)

4Note that, these Irreducible Schwinger bosons constructed as irreducible prepotentials are themselves
quite rich in structure in the representation theoretic context. We exploit these objects to construct
SU(3) coherent states [42] and to calculate SU(3) Clebsch Gordon coefficients [43] which are essential
computational tool for loop formulation of gauge theories. We give both these construction in detail in
the appendices A and B.
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Figure 5.3: The Young tableau interpretation of the SU(3) link operator U in terms of

the prepotential operators (5.57) acting on a state with p single boxes and q double boxes

at the left of the link, and the conjugate state at the right. The three terms in (5.57) or

(5.58) correspond to the three sets of (mutually conjugate) Young tableauex on the right

hand side of this figure respectively. This is SU(3) generalization of Figure 2.2 for SU(2).

as these are nothing but the trace of the octet state or (1,1) state,(
a†α(s)b†β(s)− 1

3
δβα(a † (s) · b†(s))

)
|0〉 (5.55)

defined at s = L,R. The other possible invariant constructed out of Irreducible prepo-

tential also vanish as,

A(L) ·B(L)|0〉L ' a(L) · b(L)|0〉L ≡ 0, A(R) ·B(R)|0〉L ' a(R) · b(R)|0〉L ≡ 0(5.56)

5.7 SU(3) link operators, electric fields and irreducible prepo-

tentials

The SU(3) link operator must create 3 and 3∗ fluxes at the left and right end of the link

and should satisfy the U(1) ⊗ U(1) Gauss law constraints (5.10). These requirements

are similar to SU(2) case discussed in chapter 2. In addition to this the link operator

must satisfy the Sp(2,R) constraint given in (5.45). Anyway noting that the Sp(2,R)

constraints are already solved in terms of irreducible Schwinger bosons in the last section

and observing that, by construction, A†α(s) and B†α(s) transform exactly like a†α(s) and

b†α(s), l = s, R, on a particular link the general structure of the link operator is:

Uα
β = B†α(L)ηA†β(R) + Aα(L)θBβ(R) +

(
B(L) ∧ A†(L)

)α(
A(R) ∧B†(R)

)
β
. (5.57)

In (5.57), η, θ and δ are the SU(3) invariants and therefore can only depend on the number

operators. These will be fixed later in this section. The link operator constructed in (5.57)

has all the required group theoretical properties:
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• Under SU(3) transformations U(n, i)αβ → (ΛL)αγU(n, i)γδ(ΛR
†)δβ.

• It is invariant under U(1)⊗ U(1) abelian gauge transformations.

• It creates and destroys fluxes in Hg in (5.44). It is easy to check that the link

operator Uα
β in (5.57) satisfy (5.45).

• Acting on a link state in |p, q〉L and |q, p〉R representations of SU(3)L × SU(3)R:

Uα
β|p, q〉L ⊗ |q, p〉R = C1

α
β|p+ 1, q〉L ⊗ |q, p+ 1〉R + C2

α
β|p, q − 1〉L ⊗ |q − 1, p〉R

+ C3
α
β|p− 1, q + 1〉L ⊗ |q + 1, p− 1〉R, (5.58)

where C1, C2 and C3 are the SU(3) Clebsch Gordan coefficients. The three terms

in (5.57) correspond to the three terms in (5.58) respectively. In Figure 5.3, we

illustrate (5.57) and (5.58) in terms of SU(3) Young tableau diagrams where the

link operator changes the shape of the Young tableaux in all possible ways.

Written in matrix form the link operator has the form of a most general SU(3) matrix.

Like in SU(2) case (2.21), it is convenient to break the full link operator matrix into left

and right matrices as:

U =

 B†1(L)ηL A1(L)θL (B(L) ∧ A†(L))1δL
B†2(L)ηL A2(L)θL (B(L) ∧ A†(L))2δL
B†3(L)ηL A3(L)θL (B(L) ∧ A†(L))3δL


︸ ︷︷ ︸

UL

×

 A1(R)η̄R B1†(R)θ̄R (B(R) ∧ A†(R))1δ̄R
A2(R)η̄R B2†(R)θ̄R (B(R) ∧ A†(R))2δ̄R
A3(R)η̄R B3†(R)θ̄R (B(R) ∧ A†(R))3δ̄R

†
︸ ︷︷ ︸

UR

≡ ULUR (5.59)

In (5.59), ηL, θL, δL and η̄R, θ̄R, δ̄R are the left and right invariants constructed out of the

number operators. From (5.57):

η = ηL ηR, θ = θL θR, δ = δL δR. (5.60)

Under SU(3) gauge transformation on a link,

U → ΛLUΛ†R = ΛLULURΛ†R

⇒ UL → ΛLU & UR → URΛ†R (5.61)
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From (5.59):

U †LUL =

=



η̄L

(
B ·B†

)
ηL η̄L

(
B · A

)
︸ ︷︷ ︸
'0

θL η̄L

(
B ·
(
B ∧ A†

) )︸ ︷︷ ︸
≡0

δL

θ̄L

(
A† ·B†

)
︸ ︷︷ ︸

'0

ηL θ̄L

(
A† · A

)
θL θ̄L

(
A† ·

(
B ∧ A†

) )︸ ︷︷ ︸
≡0

δL

δ̄L

( (
B† ∧ A

)
·B†

)
︸ ︷︷ ︸

≡0

ηL δ̄L

( (
B† ∧ A

)
· A
)

︸ ︷︷ ︸
≡0

θL δ̄L

( (
A ∧B†

)
·
(
B ∧ A†

) )
δL


(5.62)

Similarly,

URU
†
R =



ηR

(
A† · A

)
η̄R ηR

(
A† ·B†

)
︸ ︷︷ ︸

'0

θ̄R ηR

(
A† ·

(
B ∧ A†

) )︸ ︷︷ ︸
≡0

δ̄R

θR

(
B · A

)
︸ ︷︷ ︸
'0

η̄R θR

(
B ·B†

)
θ̄R θR

(
B ·
(
B ∧ A†

) )︸ ︷︷ ︸
≡0

δ̄R

δR

( (
B† ∧ A

)
· A
)

︸ ︷︷ ︸
≡0

η̄R δR

( (
B† ∧ A

)
·B†

)
︸ ︷︷ ︸

≡0

θ̄R δR

( (
A ∧B†

)
·
(
B ∧ A†

) )
δ̄R


(5.63)

In (5.62) and (5.63), we have suppressed the L/R indices from the prepotential operators

(A,A†) and (B,B†). Note that, in (5.62) and (5.63), the off-diagonal elements vanishes.

The weakly vanishing terms vanish using (5.54) and (5.56), whereas the strongly van-

ishing terms vanish as they contain anti-symmetric product of two identical operators.

Demanding U †LUL = 1 and URU
†
R = 1, we get:

ηL =
1√

B(L) ·B†(L)
, θL =

1√
A†(L) · A(L)

,

δL =
1√

(A(L) ∧B†(L)) · (B(L) ∧ A†(L))
;

ηR =
1√

A†(R) · A(R)
, θR =

1√
B(R) ·B†(R)

,

δR =
1√

(A(R) ∧B†(R)) · (B(R) ∧ A†(R))
. (5.64)
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Figure 5.4: The SU(3) prepotentials associated with a lattice site n in d = 2. This is

SU(3) generalization of Figure (3.4) for SU(2).

The link operators in (5.57) with (5.60) and (5.64) satisfy: UU † = U †U = 1. Having

written the link operators in terms of the SU(3) irreducible prepotentials, we now cast

the left and right electric fields (5.2) in terms of A(l), A†(l), B(l), B†(l) with l = L,R.

Using the very special structures of the SU(3) irreducible prepotentials in (5.46), explicit

calculation shows that:

Ea
L =

(
a†(L)

λa

2
a(L)− b(L)

λa

2
b†(L)

)
'
(
A†(L)

λa

2
A(L)−B(L)

λa

2
B†(L)

)
Ea
R =

(
a†(R)

λa

2
a(R)− b(R)

λa

2
b†(R)

)
'
(
A†(R)

λa

2
A(R)−B(R)

λa

2
B†(R)

)
(5.65)

In (5.65), the use of the expression of irreducible prepotentials given in (5.46) leads to

explicit cancellation of the terms proportional to bα
λa

2

α
βa
†β. In fact the results (5.65)

were expected because (a†α, b
†β) and (A†α, B

†β) have exactly the same SU(3)⊗U(1)⊗U(1)

transformation properties.
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5.8 SU(3) gauge invariant states and Mandelstam Constraints

in terms of Prepotentials

In this section we construct all possible SU(3) gauge invariant states at a given lattice site

using prepotential approach. We also discuss the Mandelstam constraints which relate

these gauge invariant states. As shown in Figure 5.4, every lattice site in 2d space di-

mension is associated with 2d pairs of quark-anti quark prepotentials (A†α, B
†α). Under a

gauge transformation at site n, all these 2d quark (anti quark) prepotentials transform to-

gether as triplet (anti-triplet). Therefore, the fundamental SU(3) gauge invariant creation

operator vertices at a lattice site n are:

L[ij] ≡ A†[i] ·B†[j], i 6= j, (5.66)

A[i1,i2,i3] = εα1α2α3A†α1
[i1]A†α2

[i2]A†α3
[i3], (5.67)

B[j1,j2,j3] = εβ1β2β3B
†β1 [j1]B†β2 [j2]B†β3 [j3] i, j = 1, 2, .., 2d. (5.68)

These vertices are shown in Figure 5.5. We have taken i 6= j in (5.66) because Lii =

A†[i] · B†[i] ' 0, i, j = 1, 2, · · · 2d according to (5.54). Also, A[i1,i2,i3] and B[j1,j2,j3] are

completely anti-symmetric in (i1, i2, i3) and (j1, j2, j3) indices respectively. The above

2d(2d− 1) + 2(2dC3) =
2d(2d− 1)(2d+ 1)

3

basic SU(3) gauge invariant operators enable us to write the most general SU(3) gauge

invariant state at a given lattice site as:

|~l[ij], ~p[i1i2i3], ~q[j1j2j3]〉 =
2d∏
i,j=1
i 6=j

(
L[ij]

)l[ij] 2dC3∏
[i1i2i3]=1

(
A[i1i2i3]

)p[i1i2i3]

2dC3∏
[j1j2j3]=1

(
B[j1j2j3]

)q[jji2j3]

|0〉.(5.69)

In (5.69), ~l[ij], ~p[i1i2i3], ~q[j1j2j3] are 2d(2d−1)(2d+1)
3

non-negative integers describing all possible

SU(3) gauge invariant states at a given lattice site. The various possible loop states set

in pure SU(3) lattice gauge theory are direct products of (5.69) at various lattice sites

consistent with U(1)⊗U(1) Gauss law (5.10) along every link. As in the loop formulation

where various loop states are mutually related by Mandelstam constraints, not all states

in (5.69) are linearly independent. In fact, in the present SU(3) prepotential formulation

(like in SU(2) case) the Mandelstam constraints become local and take very simple forms
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Figure 5.5: Graphical representation of the three possible SU(3) gauge invariant L, A, B

types of vertices. Two simple SU(3) ⊗ U(1) ⊗ U(1) gauge invariant loop states are also

shown. The arrows represent the directions of the abelian (non-abelian) fluxes on the

links (sites).

in terms of the SU(3) gauge invariant vertices in (5.66,5.67) and (5.68) at every lattice

site n. We start with the simplest SU(3) Mandelstam constraints:

A[i1,i2,i3]B[j1,j2,j3] ≡
∑

{s1,s2,s3}∈S3

(−1)sL[i1js1 ]L[i2js2 ]L[i3js3 ]. (5.70)

In (5.70), S3 denotes the permutation group of order 3, {s1, s2, s3} denote the 3! permu-

tations of {1, 2, 3} and s is the parity of permutation. In other words, the Mandelstam

constraints (5.70) state that the A and B type vertices annihilate each other in pairs to

produce L type vertices. The constraints (5.70) are illustrated in Figure 5.6. Therefore,

the SU(3) gauge invariant states of (L − A − B) type in (5.69) can always be written

either as (L − A) type or as (L − B) type at each lattice site. Note that the L, A and

B type invariants are the only invariants present at a site for SU(3) lattice gauge theory.

Also they are related by a unique relation (5.70) which is analogue of the fundamental

Mandelstam constraint for SU(2) obtained in terms of prepotentials as in (3.18). The

constraint (5.70) is basically the only fundamental Mandelstam constraint present locally

at each site of the SU(3) lattice gauge theory which involves three loops passing through

that site. This fundamental Mandelstam identities were never discussed in the context of

SU(3) lattice gauge theory. The set of Mandelstam identities well-known in the literature

for SU(3) lattice gauge theory so far are due to Migdal [37]. These are basically the Man-
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Figure 5.6: The graphical representation of local SU(3) Mandelstam constraints (5.70)

in terms of SU(3) gauge invariant vertices A,B and L constructed out of the SU(3)

irreducible prepotential operators at a lattice site n. The A and B type of vertices at n

annihilate each other to produce L type of vertices.

delstam constraints (similar to the one given (3.8) for SU(2) case) in terms of the link

operators, which are non-local, and involve more than three loops (as opposed to the one

given in (5.70) involving only three loops). To illustrate this let us consider Migdal’s set

of constraints once more in the context of SU(3) lattice gauge theory. We consider the set

of r(> 3) loops Γ1(n),Γ2(n), · · · ,Γr(n), which passes through a particular site (n) from

the direction i1, i2, . . . , ir to the directions j1, j2, . . . , jr respectively, then they satisfy the

identity:∑
αi1
···αir

βj1
···βjr

εαi1αi2 ···αir ε
βj1βj2 ···βjr (W (Γ1(n))αj1 βi1 (W (Γ2(n))αj2 βi2 · · · (W (Γr(n))αjr βir ≡ 0. (5.71)

Note that, in terms of the original link variables, the loops Γ1(n),Γ2(n), · · · ,Γr(n) are

allowed to be as large as one wishes and r can also be as large as possible. However, in

terms of the prepotentials, the constraints (5.71) become local. All one has to do is to

replace the Wilson loops W (Γs)
αjs βis

in (5.71) by the prepotentials which are attached to

the links in the direction is and js corresponding to the starting and ending direction at

that particular point, i.e,:

W (Γs)
αjs

βis
→ Lαβ[is.js] ≡ B[js]

†αA†[is]β, s = 1, 2, · · · , r. (5.72)

Note that unlike non-local Wilson loop W (Γs), the operators Bα(js) and A†β(is) and hence

Lαβ[is.js] are completely defined locally at lattice site n. Noting that Tr (Lαβ[is.js]) =

L[isjs], the non-local Mandelstam constraints (5.71) acquire the following simple local
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Figure 5.7: The graphical representation of local SU(3) Mandelstam constraints (5.73)

involving only L type of vertices at lattice site n.

form: ∑
{s1,s2,···sr}∈Sr

(−1)sL[is1js1 ]L[is2js2 ] · · ·L[isr jsr ] = 0 (5.73)

and are illustrated in Figure 5.7. Note that all the unnecessary details like shapes, sizes

and lengths of the loops Γ1,Γ2, · · ·Γr in (5.71) disappear in the corresponding prepotential

form (5.73).

The Mandelstam constraints in their present local prepotential forms (5.70) and (5.73),

instead of non-local form (3.8) in terms of link operators, are now accessible to explicit

local solutions like in SU(2) lattice gauge theory [29]. Note that they are still infinite

in number at every lattice site but the number of Mandelstam constraints are finite.

The solution of these fundamental Mandelstam constraint will be the orthonormal phys-

ical Hilbert space constructed out of prepotentials. The solutions must be all possible

mutually independent linear combinations of the states in (5.69) at a given lattice site.

Following the techniques discussed in [44] in the context of duality transformations in

lattice gauge theories, these linear combinations can be obtained by characterizing the

resultant states at a site n by their complete SU(3) quantum numbers with the net SU(3)

fluxes being zero. This will be SU(3) analogue of SU(2) results. The quantum numbers

needed to specify such states can be easily computed [44] as follows. In the standard lan-

guage [45], the SU(3) irreducible representations are completely specified by 5 quantum

numbers: |p, q, i, iz, y〉 where p and q are the eigenvalues of two SU(3) Casimir operators

and i, iz, y are the SU(3) “magnetic” quantum numbers representing isospin, it’s third
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component and hyper charge respectively. In the present language with constraints, each

of the 2d directions (see Figure 5.4 for d=2) is associated with 6 harmonic oscillators

(A†[i], B†[i], i = 1, 2, · · · , 2d) and therefore requires 6 occupation numbers to completely

specify the basis. The constraints k− [i] ≡ a[i] · b[i] ' 0 reduces this to 5 in each direction.

Therefore 5 × 2d = 10d quantum numbers are needed to specify a local Hilbert space

basis completely at each lattice site. Not all these quantum numbers are independent as

2d of these are related to the previous sites by U(1)⊗U(1) Gauss law constraints (5.10).

Therefore, we are left with 8d quantum numbers at every lattice site. Finally, the SU(3)

gauge invariance further implies 8 constraints. Therefore, the net independent quantum

numbers are 8(d − 1) per lattice site. As expected, this is the the number of transverse

degree of freedom of 8 SU(3) gluons in d spatial dimensions at every lattice site. The

abelian U(1)×U(1) fluxes over the links will now glue these local SU(3) invariant orthog-

onal basis at neighboring lattice sites according to their Gauss laws (5.10). This will give

complete solutions of all the SU(3) Mandelstam constraints like what was done in SU(2)

lattice gauge theory [29].

5.9 Summary and discussion

In this chapter we analyze SU(3) lattice gauge theory in terms of the prepotential oper-

ators which under gauge transformations transform like fundamental matter fields. We

constructed the SU(3) irreducible prepotential operators which acting on strong coupling

vacuum directly created the QCD fluxes around lattice sites. All SU(3) gauge invariant

vertices in terms of these QCD flux operators were constructed at every lattice site. These

SU(3) invariant vertices, in turn, enabled us to cast all SU(3) Mandelstam constraints in

their local forms. As discussed in the text, this is an essential step towards their complete

solution. The complete solution of Mandelstam constraints, in turn, will allow us to write

down SU(3) lattice gauge theory completely and exactly in terms of minimum essential

gauge invariant loop and string co-ordinates without any redundant loop/strings degrees

of freedom as in the SU(2) case. The prepotential operators also allow us to simplify

lattice gauge theory Hamiltonian (4.1). In particular, for the present SU(3) case, one can

simply replace the plaquette or magnetic term TrUplaquette in (4.1) by a new plaquette in-
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teraction consisting of the 4 L type vertices at the 4 corners of every plaquette. Note that

the new Hamiltonian constructed this was has exactly the same symmetries as (4.1). The

addition of matter field interactions in the prepotential formulation is trivial as matter

and prepotential have similar SU(3) gauge transformation properties. The difference lies

in the abelian U(1)⊗ U(1) transformations under which matter fields remain invariant.

In the next chapter we again generalize the idea of irreducible prepotentials to arbitrary

SU (N) gauge theory.



Chapter 6

Prepotential Formulation for SU(N) Lattice Gauge

Theory

In the last two chapters we have developed prepotential formulation of lattice gauge the-

ory for gauge group SU(2) and SU(3) respectively. At this stage it is natural to generalize

this to arbitrary SU(N). The first obstacle comes from the group theoretic complications

that are inevitable for SU(N) representations. We have earlier constructed SU(3) irre-

ducible Schwinger bosons and utilized them to construct SU(3) irreducible prepotentials.

Now, this SU(3) construction does not seem to have direct generalization to SU(N). This

is because unlike SU(3), SU(N) representation (N>3) are constructed out of more than

two fundamental irreps. We require (N-1) fundamental irreps to construct any arbitrary

representation of SU(N) [45]. The increasing number of fundamental irreps for SU(N)

(with increasing N) representations increases the multiplicity of SU(N) irreps. In this

chapter we take account of all these multiplicity and define a new set of modified irre-

ducible Schwinger bosons for SU(N) [35], N ≥ 2. Note that all of the earlier SU(2) and

SU(3) results can also be recovered from this new construction. These general SU(N)

irreducible Schwinger boson operators defined at each site of lattice can be identified with

SU(N) irreducible prepotential operators of SU(N) lattice gauge theory. We also show

that in terms of these new irreducible prepotentials one can construct local gauge invari-

ant operators at each lattice site. The non-local loop states are constructed by weaving

the local SU(N) invariant states by

U(1)⊗ U(1)⊗ . . .⊗ U(1)︸ ︷︷ ︸
N−1 terms

≡ U(1)(N−1)

81
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abelian gauge transformation. The Mandelstam constraints can also be realized in this

new setting. It is interesting to see a whole class of Mandelstam constraints become trivial

in these new formulation.

6.1 Prepotentials in SU(N) Lattice Gauge Theory

In this section we define the SU(N) prepotential operators which carries the fundamental

representation of SU(N). The Schwinger boson representation of SU(N) group is obtained

by N − 1 independent harmonic oscillator N -plets each transforming as N representation

of SU(N). In terms of these prepotentials residing at both the left and right end of a link

(we do not put a explicit link index as long as we are on a same link), the left and right

electric fields are respectively constructed as,

EL = a†(1, L)
Λa

2
a(1, L) + a†(2, L)

Λa

2
a(2, L) + . . .+ a†(N − 1, L)

Λa

2
a(N − 1, L)

ER = a†(1, R)
Λa

2
a(1, R) + a†(2, R)

Λa

2
a(2, R) + . . .+ a†(N − 1, R)

Λa

2
a(N − 1, R) (6.1)

In (6.1), Λa is the generalized Gell-Mann matrices for SU(N) [45], a†[i, s] for i = 1, 2, . . . N−
1 and s = L,R are harmonic oscillator N -plets satisfying the following harmonic oscillator

algebra: [
aα[i, s], a†β[j, s′]

]
= δαβδijδss′ (6.2)

The electric fields given in (6.1) generates SU(N) gauge thansformation at both the ends

of a link. Hence there are N − 1 Casimirs for rank N − 1 group SU(N), present at both

the ends of a link. In terms of prepotentials these Casimirs are expressed as the N − 1

number operators. i.e

N [i, s] = a†[i, s] · a[i, s] (6.3)

for i = 1, 2, . . . N − 1 and s = L,R. The eigenvalues of the Casimir operatots are to be

denoted by nsi . The SU(N) irreps are characterized by the eigen values of these N − 1

number of Casimir operators. In terms of Young tableaux an arbitrary SU(N) irrep is

represented as given in figure 6.1 and 6.2. The SU(N) Casimirs are the count of the

number of boxes in each of the N − 1 rows of the general SU(N) Young tableaux. The
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constituting fundamental irreps of the tableaux are columns of 1, 2, 3, . . . , N − 1 boxes

respectively. Hence to specify a particular irrep of SU(N), one must specify the number

of each constituting fundamental irrep, which is basically the difference in length of a

particular row and that of the next lower row as shown in figure 6.1 and 6.2. Concentrating

on a link of the spatial lattice, the SU(N) irreducible states residing at each end of a link

is characterized by

|n1 − n2, n2 − n3, . . . , nN−2 − nN−1, nN−1〉L/R (6.4)

It is worth mentioning here that, to be a valid irrep of SU(N), theN−1 Casimir eigenvalues

of SU(N) at s end of a link must satisfy the relation:

ns1 ≥ ns2 ≥ ns3 ≥ . . . ≥ nsN−1. (6.5)

The above relation also carries the information that the ith row of Young tableaux con-

taining nsi boxes have been created by a†[i, s] only as shown in figure 6.3. The prepotential

operators defined in (6.1) transform as a N representation under SU(N),

a†α[i, s]→ a†β[i, s]
(
Λ†s
)β

α (6.6)

Note that, unlike the SU(3) analysis in last section, here all the prepotentials do transform

in the same way under SU(N) as N-plets and are represented by single boxes of the

Young tableaux. But we need N − 1 different fundamental representations of SU(N),

to construct all possible irreps (like 4, 6, 4∗ for SU(4)). However all other fundamental

representations of SU(N) are constructed out of these fundamental N -plets. Hence all

N − 1 fundamental representations of SU(N) are obtained as antisymmetric combination

of k, for k = 1, 2, . . . N − 1 independent N-plets.

6.2 The Additional Abelian Gauge Invariance

Like SU(2) and SU(3) case, from the defining relation of prepotentials (6.1) it is evident

that the generators of gauge transformations are invariant under the following abelian

gauge transformation:

a†[i, s]→ eiθ[i,s]a†[i, s] (6.7)
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for s = L,R. As there are N − 1 Schwinger bsosons at each end of the link, we have the

following additional symmetry corresponding to each side of a link:

U(1)⊗ U(1)⊗ . . .⊗ U(1)︸ ︷︷ ︸
N−1 terms

≡ U(1)(N−1). (6.8)

Hence, for a particular link there is an extra U(1)2(N−1) invariance which was not present

in the old Kogut-Susskind formulation of Hamiltonian lattice gauge theory. However,

this extra abelian symmetry group is actually of a smaller rank as all these two sets of

U(1)(N−1) transformations are not independent. This is because of the following facts:

1. The gauge theory Hilbert space spanned by the states in (6.4) is created by the

action of link operators, i.e

Uαn
βn . . . Uα2

β2Uα1

β1|0〉 (6.9)

From the transformation properties of link variables it is manifest that whichever

representation is created at the left of a link the conjugate representation of the

same must be created at right end.

2. The left and right electric fields are not independent but they are related by parallel

tranport through link operator U satisfying the constraint:

E2
L = E2

R (6.10)

The first one of the two above facts can be understood well by considering explicitly the

corresponding Young tableaux. Let’s consider the left Hilbert space in spanned by the

states:

|n1 − n2, n2 − n3, . . . , nN−2 − nN−1, nN−1〉L

represented by the Young tableaux as in figure 6.1: According to 1, it’s conjugate rep-

resentation will be created at the other end of the link and is represented by the Young

tableaux in figure 6.2. The conjugate representation in terms of Young tableaux means

that combining (i.e joining from opposite directions) these two Young tableaux one would

get a tableaux consisting only of columns of length N . The condition of two Young

tableaux to be conjugate of each other is illustrated in figure 6.3.
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Figure 6.1: General SU(N) Young tableaux at the left end of a link

As stated earlier, the N − 1 SU(N) Casimir operators at each end of a link basically

counts the number of boxes in each row of a Young tableaux. We also follow the convention

that one particular type harmonic oscillators (a†[i, s]) creates Young tableaux boxes in a

particular row (ith row). With reference to fig 6.1 and 6.2, the two Young tableau created

by the action of U ’s at both the ends of a link, which are conjugate to each other must

satisfy the following relations between their 2(N − 1) Casimir eigenvalues:

nL1 = nR1 = n

nL2 + nRN−1 = n

nL3 + nRN−2 = n
...

nLp + nRN−p+1 = n

...

nLN−2 + nR3 = n

nLN−1 + nR2 = n (6.11)

These constraints are also illustrated in figure 6.3. The above set of constraints are the

SU(N) analogues of (2.19) and (5.10) for SU(2) and SU(3) cases respectively. Hence for

SU(N) we have only N − 1 independent Casimir eigenvalues for both the left and right



Chapter 6. Prepotential Formulation of SU(N) Lattice Gauge Theory 86

Figure 6.2: Conjugate SU(N) Young tableaux at the right end of the link

representations as below.

|n1 − n2, n2 − n3, . . . , nN−2 − nN−1, nN−1〉L ⊗ |nN−1, nN−2 − nN−1, . . . , n2 − n3, n1 − n2〉R

Above is the state created by the action of link operators on a link and is characterized

by N − 1 Casimir eigenvalues of SU(N). At this point, we put N = 3 in the above set of

constraints given in (6.11) and get,

nL2 + nR2 = nL1 = nR1 , (6.12)

putting this in (6.12), we get the state,

|n1 − n2, n2〉L ⊗ |n2, n1 − n2〉R

on a link, which is compatible with the constraint given in (5.10) for SU(3) in the earlier

picture.

The set of constraints in (6.11), are nothing but the reflection of the Electric field

constraint (6.10). Thus for prepotential formulation of SU(N) gauge theory we would

have an additional set of N − 1 number of U(1) Gauss law constraints as all the U(1)

gauge transformation parameters given in (6.7) are not independent, but they are related
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Figure 6.3: Conditions of left and right irreps for being mutually conjugate. The Young

tableaux consisting of white boxes is the left SU(N) irrep and the Young tableaux con-

structed by inverting the set of grey boxes vertically is the right SU(N) irrep. The number

of boxes in each of the irreps are constrained in order to make mutually conjugate irreps.

as,

θ[1, L] = −θ[1, R]

θ[2, L] + θ[N − 1, R] = 0

θ[3, L] + θ[N − 2, R] = 0
...

θ[p, L] + θ[N − p+ 1, R] = 0
...

θ[N − 2, L] + θ[3, R] = 0

θ[N − 1, L] + θ[2, R] = 0 (6.13)

Hence the total U(1)2(N−1) invariance given in (6.7) is reduced to U(1)(N−1) invariance

which is to be satisfied by the prepotentials.

6.3 SU(N) prepotential Hilbert space vs. SU(N) Gauge theory

Hilbert space

As discussed in detail for SU(3) case, the prepotential Hilbert space HP spanned by the

basis vectors |nL1 , nL2 , ..., nLN−1〉⊗|nR1 , nR2 , ..., nRN−1〉 is actually a much bigger space than the
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Figure 6.4: A general SU(N) Young tableaux consists of N−1 fundamental Young tableax

columns. Each of the fundamental columns of length l = 1, 2, .., N − 1 are again antisym-

metric combination of r independent Young tableaux boxes.

Gauge theory Hilbert space created by the action of U ’s on the strong coupling vacuum.

Note that prepotential basis vectors are direct product of N−1 number of different N rep-

resentations of SU(N). Whereas, the link variables create mutually conjugate irreducible

representations of SU(N) at both the ends of it. To create all possible irrep of SU(N) one

needs all the N − 1 fundamental representations of it which is to be constructed out of

these N − 1 prepotentials as shown in the Young tableaux in figure 6.3. As a property of

Young tableaux it is always symmetric along a row and antisymmetric along a column.

It is worth specifying again that we stick to the convention that the ith row of an Young

tableaux at side s = L,R is always created by a†[i, s]. This convention automatically

brings the constraint nsi ≥ nsj for i < j, where, nsi is the eigenvalue of a†[i, s] · a[i, s], to

construct valid Young tableaux. Taking into account this number operator constraints

the vertical antisymmetry of any Young tableaux can be implemented by imposing the

following constraints [35,46]:

Cij[L]⊗ Ckl[R] ≡
(
a†[i, L] · a[j, L]

)
⊗
(
a†[k,R] · a[l, R]

)
≈ 0, for i < j & k < l(6.14)

These constraints are basically SU(N) invariants. Note that, all the invariants of SU(N)

are as follows:

(
a†[i, L] · a[j, L]

)
⊗
(
a†[k,R] · a[l, R]

)
∀i, j, k, l (6.15)
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where, for i = j and k = l the invariants are trivial number operators. To illustrate

the constraint (6.14) let us consider the special case of SU(3) irreps created at both the

ends of a link for SU(3) gauge theory. For SU(3), we need two fundamental irreps 3

and 3∗. Instead we can also consider two different 3-representation and create 3∗ as the

antisymmetric combination of these two. In terms of prepotentials we must have a†[i, s],

for i = 1, 2 and s = L,R. We also choose the convention that the 1st row of Young

tableaux or the 3 representation on side s is created by a†[1, s]. The second row of Young

tableaux is created by a†[2, s]. To construct an SU(3) irrep, whenever a†[2, s] appears,

it must be anti-symmetrized with one of the a†[1, s]. This implies that to construct any

particular irrep of SU(3), number of a†[2, s] must be less than or equal to that of a†[1, s].

Moreover, the vertical antisymmetry implies:

a†[1, s] · a[2, s] ' 0 (6.16)

The weak equation implies acting on any SU(3) irrep. Hence, for a particular link of

SU(3), we have,

a†[1, L] · a[2, L]⊗ a†[1, R] · a[2, R] ' 0. (6.17)

In case of SU(4) the above illustration also holds to create 4 and 6 representation. Together

with these two a third fundamental irrep and correspondingly a third set of prepotential

operators to create the 4∗ representation. Hence, the additional constraints arising for

SU(4) are:

a†[1, L] · a[3, L]⊗ a†[1, R] · a[3, R] ' 0

a†[2, L] · a[3, L]⊗ a†[2, R] · a[3, R] ' 0. (6.18)

These are the analogous equations of (6.14) for N = 3, 4.

Since the link operators acting on a state in the gauge theory Hilbert space creates

a linear combination of states in the same Hilbert space, it must commute with these

constraints also. i.e [
Cij[L]⊗ Ckl[R], Uα

β
]
≈ 0 (6.19)

In the next section we construct the link operators which directly create the SU(N) fluxes

at both the ends of a lattice and also satisfies all the previously mentioned constraints.
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6.4 SU(N) link operator in terms of prepotentials

In this section we will construct SU(N) link operator in terms of prepotential operators.

As discussed in the last chapter for the case of SU(3), the link operator acting on the

strong coupling vacuum creates the states in the gauge theory Hilbert space. It was also

discussed that the action of link operator on strong coupling vacuum cannot create any

SU(N) invariant state on a particular link itself. Thus starting from its action on vacuum

it can never produce any gauge invariant state on a link. The same argument is valid for

arbitrary SU(N) link operators too. The SU(N) invariant operators in (6.15) for i > j

acting on strong coupling vacuum creates the states corresponding to the (a† · b†)|0〉 on a

link for SU(3) case discussed in last chapter. As in the SU(3) case these states are never

created by the action of link operators. Hence to construct the link operator in terms

of prepotential we must cut down these spurious gauge invariant degrees of freedom on

a link as it was done in the last section for SU(3) case. Following the same strategy as

SU(3) case, the first step of the construction of link operators in SU(N) lattice gauge

theory in terms of prepotentials is to construct irreducible prepotential operators which

is free from any spurious gauge invariant degrees of freedom on a link. Moreover these

irreducible prepotentials should directly create SU(N) irreducible representation having

all the symmetry properties of a general SU(N) Young tableaux. Like in SU(3) case, we

exploit these irreducible prepotentials to construct the link operators which create the left

and right irreps, mutually conjugate to each other, belonging to the gauge theory Hilbert

space and finally satisfying all the U(1)⊗(N−1) constraints.

6.4.1 Irreducible Prepotential Operators

Let us define irreducible prepotential operators residing at each lattice site, with the

following properties [35]

• carries all the same quantum numbers as that of ordinary prepotential operators

defined in (6.1),

• commutes with the constraints Cij[s] ≈ 0,

• acts as a monomial on the vacuum to create irreducible representations.
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Let us first discuss the construction of the irreducible prepotentials for SU(3) and

SU(4), and then we will generalize it to arbitrary SU(N). Concentrating on a particular

side of the link s = L/R, the prepotential operators present are a†[i, s], a[i, s], i = 1, 2 for

SU(3) and i = 1, 2, 3 for SU(4) to construct any arbitrary irrep of SU(3) as well as SU(4).

The constraints that any irrep must satisfy are:

a†[1, s] · a[2, s] ' 0 (6.20)

for SU(3), together with

a†[1, s] · a[3, s] ' 0

a†[2, s] · a[3, s] ' 0 (6.21)

for SU(4). Clearly all the prepotential operators do not commute with these constraints.

The ones which commute is a†[1, s] and a[3, s]. Hence we define a set of irreducible

prepotential operators all of which do commute with all the constraint equations as follows:

A†α[1, s] = a†α[1, s]

A†α[2, s] = a†α[2, s] + F 2
1 [s]

(
a†[2, s] · a[1, s]

)
a†α[1, s]

A†α[3, s] = a†α[3, s] + F 3
1 [s]

(
a†[3, s] · a[1, s]

)
a†α[1, s]

+F 3
2 [s]

(
a†[3, s] · a[2, s]

)
a†α[2, s]

+F 3
2 [s]F 2

1 [s]
(
a†[3, s] · a[2, s]

) (
a†[2, s] · a[1, s]

)
a†α[1, s]. (6.22)

where,

F k
i = − 1

N [i, s]−N [k, s] + 1 + k − i
. (6.23)

is calculated from the condition that,

[Cij[s], A
†[j, s]] ' 0, ∀j (6.24)

where, Cij[s] = a†[i, s] · a[j, s]. Note that, in construction (6.22), the transformation

properties of new operators have been kept exactly same as the original ones by keeping

the total number of a†[i, s] in A†[i, s] equal to one whereas everything else equal to zero.
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Similarly we also define the prepotential annihilation operators as:

Aα[3, s] = aα[3, s]

Aα[2, s] = aα[2, s] +H3
2 [s]

(
a†[3, s] · a[2, s]

)
aα[3, s]

Aα[1, s] = aα[1, s] +H3
1 [s]

(
a†[3, s] · a[1, s]

)
aα[3, s]

+H2
1 [s]

(
a†[2, s] · a[1, s]

)
aα[2, s]

+H3
2 [s]H2

1 [s]
(
a†[3, s] · a[2, s]

) (
a†[2, s] · a[1, s]

)
aα[3, s]. (6.25)

where,

H i
k[s] =

1

N [i, s]−N [k, s] + 1 + k − i
≡ −F k

i [s] . (6.26)

are calculated such that the annihilation operators too commute with the constraints.

Now we generalize the above construction to arbitrary SU(N). Let us define [35] the left

and right prepotentials A†[i, s], for i = 1, 2, .., N − 1 and s = L,R as:

A†α[k, s] = a†α[k, s] +
k−1∑
r=1

k−1′∑
{i1,..,ir}=1

F k
i1

[s] F k
i2

[s] · · ·F k
ir [s]C

†
i1k
C†i2i1 . . . C

†
irir−1

a†α[ir, s].(6.27)

In (6.27) k = 1, 2, · · · (N −1) and the prime over the second summation (
∑′) implies that

the ordering k > i1 > i2 > ... > ir has to be maintained. Note that for k = 2, 3 it reduces

to (6.22) for SU(4) case. The general form of F k
i [s] is obtained in [35] as

F k
i = − 1

N [i, s]−N [k, s] + 1 + k − i
. (6.28)

Similarly all the N − 1 fundamental irreducible annihilation operators for SU(N) can also

be constructed. The general kth annihilation operator for SU(N) at side s is given by,

Aα[k, s] ≡ aα[k, s] +
N−1∑
r=1

N−1′∑
{{ir}=k+1}

H i1
k [s]H i2

k [s]..H ir
k [s]C†ki1 [s]C†i1i2 [s]..C†ir−1ir

[l]aα[ir, s].(6.29)

In (6.29) k = 1, 2, · · · (N −1) and the prime over the second summation (
∑′) implies that

the ordering k < i1 < i2 < ... < ir < N − 1 has to be maintained. The coefficients are

obtained as:

H i
k[s] =

1

N [i, s]−N [k, s] + 1 + k − i
≡ −F k

i [s] . (6.30)
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Again note that, the construction (6.29) reduces to (6.25) for SU(4) case with k = 1, 2, 3.

Explicit computation shows that all non-trivial SU(N) invariant operators (as given in

(6.15), for i 6= j & k 6= l in terms of ordinary prepotential operators), constructed out of

irreducible prepotentials becomes proportional to the constraints and hence acting on any

SU(N) irrep vanishes. Hence the Hilbert space created by SU(N) irreducible prepotential

operators contains all SU(N) representations and every representation appears once as:

A†[i, s] · A[j, s] ≈ 0, ∀ i 6= j & s = L,R . (6.31)

The only remaining SU(N) invariant operators in terms of SU(N) irreducible prepotentials

are A†[i, s] · A[i, s], i = 1, 2, · · · , (N − 1). These operators, being weakly related to the

SU(N) Casimir operators N [i, l], do not lead to multiplicity. In terms of the irreducible

prepotentials residing at both the ends of a link, the SU(N) irreps at that particular link

is nothing but the following monomial operator acting on prepotential vacuum:∣∣∣∣α[1]
1 , α

[1]
2 , . . . , α

[1]
n1

;α
[2]
1 , α

[2]
2 , . . . , α

[2]
n2

; · · · , α[N−1]
1 , α

[N−1]
2 . . . , α[N−1]

nN−1

〉
s

(6.32)

≡ Ŝ|0〉

=
(
A†α

[N−1]
1 [N − 1, s] · · ·A†α

[N−1]
nN−1 [N − 1, s]

)
︸ ︷︷ ︸

nN−1 ofA†[N−1,s]

· · · · · ·

(
A†α

[2]
1 [2, s] · · ·A†α

[2]
n2 [2, s]

)
︸ ︷︷ ︸

n2 ofA†[2,s]

(
A†α

[1]
1 [1, s] · · ·A†α

[1]
n1 [1, s]

)
︸ ︷︷ ︸

n1 ofA†[1,s]

∣∣0〉

where s = L,R and Ŝ = L̂/R̂.

6.4.2 SU(N) link operators in terms of irreduicible prepotentials

The SU(N) link operator must transform as N at left and as N∗ at right end of the link

and should also satisfy U(1)(N−1) Gauss law given in (6.11) as well as the constraints in

(6.19). The last one is already solved in terms of irreducible prepotentials. In this section

we construct the link operator exploiting the irreducible prepotentials which satisfy the

U(1)(N−1) constraints (6.11) and produce two mutually conjugate flux states at both of its

ends. The general tensor structure of U compatible with U(1)(N−1) Gauss law in (6.11)
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is as follows:

Uα
β = A†α[1, L] N1

(
A†[N − 1, R] ∧ A†[N − 2, R] ∧ . . . ∧ A†[2, R] ∧ A†[N − 1, R]

)β
+ A†α[2, L] N2 A

β[N − 1, R]

+ A†α[3, L] N3 A
β[N − 2, R]

... (6.33)

+ A†α[N − 1, L] NN−1 A
β[2, R]

+ (A[1, L] ∧ A[2, L] ∧ . . . ∧ A[N − 1, L])α NN Aβ[1, R]

This link operator acting on the mutually conjugate states (represented by Young tableaux)

at both the ends of the link deforms both the irreps in all possible way (so that it is still

an irrep) but keeping the mutual conjugacy intact. The action of U on a general mutually

conjugate state

|n1, n2, n3, . . . nN−1〉L ⊗ |n1, n1 − nN−1, n1 − nN−2, . . . , n1 − n2〉R

is as follows:

Uβ
α (|n1, n2, . . . nN−1〉L ⊗ |n1, n1 − nN−1, . . . , n1 − n2〉R)

= N1 |n1 + 1, n2, . . . nN−1〉L ⊗ |n1 + 1, n1 − nN−1 + 1, . . . , n1 − n2 + 1〉R︸ ︷︷ ︸
n1→n1+1

+N2 |n1, n2 + 1, . . . nN−1〉L ⊗ |n1, n1 − nN−1, . . . , n1 − n2 − 1〉R︸ ︷︷ ︸
n2→n2+1

+N3 |n1, n2, n3 + 1, . . . nN−1〉L ⊗ |n1, n1 − nN−1, . . . , n1 − n3 − 1, n1 − n2〉R︸ ︷︷ ︸
n3→n3+1

... (6.34)

+NN−1 |n1, n2, n3, . . . nN−1 + 1〉L ⊗ |n1, n1 − nN−1 − 1, n1 − nN−2, . . . , n1 − n2〉R︸ ︷︷ ︸
nN−1→nN−1+1

+NN |n1 − 1, n2 − 1, . . . nN−1 − 1〉L ⊗ |n1 − 1, n1 − nN−1, . . . , n1 − n2〉R︸ ︷︷ ︸
ni→ni−1 ∀i

The coefficients Ni are now to be fixed from the unitarity of link operator, i.e from the

condition UU † = U †U = 1. For calculational simplicity let us split the full link operator

to its left and right parts. Infact like the SU(2) and SU(3) case, for arbitrary SU(N) also
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the full U matrix can be written as a product of a left matrix UL and a right matrix UR

as follows;

Uα
β = (UL)α

γ (UR)γ
β (6.35)

Where,

UL =


A†1[1, L]N L

1 . . . A†1[N − 1, L]N L
N−1 (A[1, L] ∧ .. ∧ A[N − 1, L])1N L

N

A†2[1, L]N L
1 . . . A†2[N − 1, L]N L

N−1 (A[1, L] ∧ .. ∧ A[N − 1, L])2N L
N

...
. . .

...
...

A†N [1, L]N L
1 . . . A†N [N − 1, L]N L

N−1 (A[1, L] ∧ .. ∧ A[N − 1, L])N N L
N


and

UT
R =


NR

1

(
A†[1, R] ∧ .. ∧ A†[N − 1, R]

)1 NR
2 A

1[N − 1, R] . . . NR
NA

1[1, R]

NR
1

(
A†[1, R] ∧ .. ∧ A†[N − 1, R]

)2 NR
2 A

2[N − 1, R] . . . NR
NA

2[1, R]
...

...
...

. . .
...

NR
1

(
A†[1, R] ∧ .. ∧ A†[N − 1, R]

)N NR
2 A

N [N − 1, R] . . . NR
NA

N [1, R]


where, from (6.33) Ni = N L

i NR
i for all i = 1, 2, . . . N . These coefficients are to be

calculated from the unitarity property. Let us first calculate,

U †LUL = diag
(

(N L
1 )2A[1, L] · A†[1, L], (N L

2 )2A[2, L] · A†[2, L], . . . . . .

, (N L
N−1)2A[N − 1, L] · A†[N − 1, L],

(N L
N)2(A†[N − 1, L] ∧ .. ∧ A†[1, L]) · (A[1, L] ∧ .. ∧ A[N − 1, L])

)
(6.36)

All the off-diagonal terms are zero due to one of the following reasons:

A[i, L] · A†[j, L] ≈ 0 , i 6= j( from (6.31))(
A†[N − 1, L] ∧ .. ∧ A†[1, L]

)
· A†[i, L] ≡ 0, ∀i

A[i, L] · (A[1, L] ∧ .. ∧ A[N − 1, L]) ≡ 0, ∀i (6.37)
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To make all the diagonal entries of U †LUL equal to 1, the coefficients are fixed as,

(N L
1 ) =

1√
A[1, L] · A†[1, L]

(N L
2 ) =

1√
A[2, L] · A†[2, L]

...
...

(N L
N−1) =

1√
A[N − 1, L] · A†[N − 1, L]

(N L
N) =

1√
(A†[N − 1, L] ∧ .. ∧ A†[1, L]) · (A[1, L] ∧ .. ∧ A[N − 1, L])

(6.38)

Similar calculation with URU
†
R gives,

URU
†
R = diag

(
(NR

1 )2(A†[N − 1, R] ∧ .. ∧ A†[1, R]) · (A[1, R] ∧ .. ∧ A[N − 1, R]),

(NR
2 )2A[N − 1, R] · A†[N − 1, R],

(NR
3 )2A[N − 2, R] · A†[N − 2, R], . . . . . . , (NR

N )2A[1, R] · A†[1, R]
)

≡ diag(1, 1, 1, . . . . . . , 1)

⇒ NR
1 =

1√
(A†[N − 1, R] ∧ .. ∧ A†[1, R]) · (A[1, R] ∧ .. ∧ A[N − 1, R])

NR
2 =

1√
A[N − 1, R] · A†[N − 1, R]

NR
3 =

1√
A[N − 2, R] · A†[N − 2, R]

...
...

NR
N =

1√
A[1, R] · A†[1, R]

We write the final Uα
β as follows:
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Uα
β =

A†α[1, L]
1√

A[1, L] · A†[1, L]

1√
(A†[N − 1, R] ∧ .. ∧ A†[1, R]) · (A[1, R] ∧ .. ∧ A[N − 1, R])(

A†[N − 1, R] ∧ A†[N − 2, R] ∧ . . . ∧ A†[2, R] ∧ A†[N − 1, R]
)β

+ A†α[2, L]
1√

A[2, L] · A†[2, L]

1√
A[N − 1, R] · A†[N − 1, R]

Aβ[N − 1, R]

+ A†α[3, L]
1√

A[3, L] · A†[3, L]

1√
A[N − 2, R] · A†[N − 2, R]

Aβ[N − 2, R]

... (6.39)

+ A†α[N − 1, L]
1√

A[N − 1, L] · A†[N − 1, L]

1√
A[2, R] · A†[2, R]

Aβ[2, R]

+ (A[1, L] ∧ A[2, L] ∧ . . . ∧ A[N − 1, L])α
1√

(A†[N − 1, L] ∧ .. ∧ A†[1, L]) · (A[1, L] ∧ .. ∧ A[N − 1, L])

1√
A[1, R] · A†[1, R]

Aβ[1, R]

6.5 Loop States and Mandelstam Constraints in terms of Pre-

potentials

In terms of prepotential operators for gauge group SU(3) or general SU(N), we find the

counting of local loop degrees of freedom exactly same way as done in the case of SU(2)

and SU(3). As the rank of the SU(N) group is N − 1, there will be N − 1 number of

different prepotential operators associated with each end of the link. Hence, for a site in d

dimensional lattice, where 2d links meet, we will have total 2d(N − 1) prepotentials. The

SU(N) invariants are antisymmetric combination of N number of prepotentials. Hence

there exist 2d(N−1)CN basic local gauge invariant operators constructed out of prepotentials

around every lattice site. Moreover, in terms of prepotentials there exist an additional

U(1)(N−1) abelian gauge invariance (6.11) in the theory for each direction, which will put

(N − 1)d additional constraints at a site for SU(N) gauge theory. Hence we have total

M = 2d(N−1)CN − (N − 1)d

independent gauge invariant quantum numbers to characterize states locally at a par-

ticular site. This implies that all these quantum numbers are not independent as there
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should be only N = (N2 − 1)(d − 1) number of physical degrees of freedom per lattice

site (see section 3.1). Thus there are (M−N ) redundant loop degrees of freedom due to

the overcompleteness of the Wilson loops at each site. These loop redundancy is reflected

into the Mandelstam constraints. Hence there should be exactly (M− N ) number of

Mandelstam constraints among the local loop states.

To understand the invariants constructed at a site, we consider a site of a d dimensional

lattice for SU(N) lattice gauge theory, each link carries (N − 1) number of independent

fundamental representations of SU(N), each of which is a single Young tableaux box. The

invariants for SU(N) means a column of N Young tableaux boxes. Hence it is possible to

construct a column of N Young tableaux boxes from available 2d(N − 1) boxes. Such a

state is given by,

T[I1I2...IN ] = εα1α2...αNA
†α1 [I1]A†α2 [I2] . . . A†αN [IN ] (6.40)

where, In’s are all different prepotentials present around a site. One can choose such a

state in 2d(N−1)CN different way. Hence the most general gauge invariant state can be

written as

|~p[I1I2...I3]〉 =

2dCN∏
[I1I2...IN ]=1

(
T[I1I2...IN ]

)p[I1I2...IN ]

|0〉. (6.41)

Where, ~p is vector of dimension 2d(N−1)CN with positive integer entry. Note that these

kind of gauge invariant objects are analogous to the one defined in (5.67) and (5.68) for

SU(3). The another type of gauge invariant operator defined in (5.66) for SU(3) do not

exist here by construction. The most general loop state in (6.41) is SU(N) analogue of

the loop state (3.28) for SU(2) and (5.69) for SU(3) respectively. However, all these basic

gauge invariant variables T[I1..IN ] are not independent. To illustrate this, let us consider

the N = 3 case as an example.

For SU(3) lattice gauge theory, each end of a link carries two different fundamental

triplet representations (in the earlier description in chapter 4 it carries a triplet and an

anti-triplet). Hence, at a site in d dimensional lattice, there exist total 2d × 2 triplets

or prepotential operators A†α[I], with I = 1, 4d attached to 2d links. The only gauge

invariant operators constructed out of these prepotentials at particular site are:

T[I1I2I3] = εαβγA
†α[I1]A†β[I2]A†γ[I3] (6.42)
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where, I1, I2, I3 denotes any three different prepotential operators among the available 4d

prepotentials present at that site. These invariants are similar to the operators constructed

in (5.67), (5.68) for SU(3) case in the last chapter. Thus the number of possible gauge

invariant operators in SU(3) lattice gauge theory at each site is 4dC3. Note that, these

invariants for SU(N) theory with N ≥ 3 are exactly same as the invariants constructed for

SU(2) gauge theory in chapter 3. We have observed that, SU(2) invariants are mutually

related by the identity given in (3.18). In the same way, exploiting the identity,

εαβγεlmn = δαlδβmδγn − δαmδβlδγn + δαmδβnδγl − δαnδβmδγl + δαnδβlδγm − δαlδβnδγm(6.43)

we find the following relation between the invariant operators (exactly equivalent to the

SU(2) identity (3.18)):

T[I1I2I3]T[I4I5I6] − T[I1I2I4]T[I3I5I6] + T[I1I2I5]T[I3I4I6]

−T[I1I2I6]T[I3I4I5] + T[I1I3I4]T[I2I5I6] + T[I1I4I5]T[I2I3I6]

−T[I1I3I5]T[I2I4I6] + T[I1I5I6]T[I2I3I4] − T[I1I4I6]T[I2I3I5] + T[I1I3I6]T[I2I4I5] = 0. (6.44)

where I1 . . . I6 denotes any six different prepotential triplets chosen out of available 2×2d

operators present around the site. Note that, (6.44) is indeed the fundamental Mandelstam

identity for SU(3) involving only 3 loops passing through a particular site. This procedure

can be generalized in a straightforward way to arbitrary SU(N) to obtain fundamental

Mandelstam identities involving only N loops passing through a site.

The other non-local Mandelstam identities in terms of the link operators (the one given

in (5.71)) still exists with SU(N) theory for (r > N) loops passing through a particular

site. Similar to the SU(3) case, here also, this nonlocal constraints can be completely

analyzed locally using prepotential formalism (as done in (5.72)), i,e:

W → T[I1I2...IN ] (6.45)

as T[I1I2...IN ]’s are the only SU(N) invariants constructed out of the prepotentials which

are as well local. But the identities in terms of Wilson loops are not fundamental as all

of these for any aritrary number of loops can be derived from the set of fundamental

Mandelstam identities involving only N number of loops in terms of prepotentials (as

given in (6.44) for SU(3) example).
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6.6 Summary and Discussion

We have defined and constructed irreducible prepotential operator for lattice gauge theory

with arbitrary SU(N) gauge group. They are defined at each lattice site. The original

variables like electric fields and link variables are written in terms of the prepotentials.

The link operator now breaks into two parts which transform locally under SU(N) located

at two ends. The link between the left and right part of the link operator is been carried

by an additional U(1)(N1) gauge transformation. The local gauge invariant states have also

been constructed. The fundamental Mandelstam constraint for SU(N) gauge theory is also

obtained in this formulation which involves only N loops passing through a particular site

as opposed to the Migdal’s infinite set of identities involving any arbitrary (> N) number

of loops passing through a site.

However, apart from making the loop formulation simple in terms of local loop vari-

ables, the prepotentials also act as useful tool in calculating the spectrum of the Hamilto-

nian. In the next chapter we demonstrate this fact by calculating the spectrum of SU(3)

Hamiltonian exactly as well as analytically on a small lattice consisting of four sites.



Chapter 7

Single Plaquette Problem and the Prepotentials

In this chapter we will illustrate that the prepotential formulation, developed in the previ-

ous part of the thesis, also serve as useful tool in calculating the spectrum of Hamiltonian

lattice gauge theory. We have already seen that, the new formulation makes the loop

states local and finite in number. We can also solve Mandelstam constraints using prepo-

tentials in order to get exact orthonormal minimal loop basis. At this point it is interesting

to address the issue of the spectrum of the theory exploiting prepotentials.

In the present chapter we solve the eigenvalue problem of the Hamiltonian exploiting

prepotential formulation exactly as well as analytically for a small lattice consisting of

only four lattice sites. Hence only one plaquette exists to contribute to the magnetic

part of the Hamiltonian. Although there were earlier attepmts to solve single plaquette

problem exactly, the introduction of prepotentials for non abelian gauge theories makes

it much more simple compared to earlier works [47] and yields the same spectrum.

7.1 SU(2) Single Plaquette Hamiltonian

The Hamiltonian for a lattice (2.1) consisting of only one plaquette (four sites and four

links) for SU(2) Lattice gauge theory can also be written as:

H =
1

κ

4∑
l=1

E2
l + κ (2− TrUplaquette) (7.1)

where, κ(∼ 1/g2) is the inverse coupling of the theory. The electric part of this Hamil-

tonian can be diagonalized trivially by going to the angular momentum basis. In fact,

101
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this is done in the strong coupling expansion, where contribution from the magnetic term

of the Hamiltonian can be computed perturbatively. In this section we diagonalize the

magnetic term instead.

Let us consider the magnetic part of the Hamiltonian. The magnetic part comprises of

the link operator U ’s, defined on each of the four links. These link operators are basically

SU(2) matrix valued operators given by:(
U11 U12

U21 U22

)
(7.2)

Product of four such U ’s on four of the links is again an SU(2) matrix U , the trace of

which gives TrUplaquette ≡ χ(U), where, χ(U) is the SU(2) character. Note that, all the

Uαβ’s commute among themselves (2.25). Hence Uαβ for all values of α and β must have

common eigenstates. Let us denote that common eigenstate as |z〉, such that,

Uαβ|z〉 = zαβ|z〉.

Now the eigenvalue of the full link operator U with eigenstate |z〉 is z =

(
z11 z12

z21 z22

)
.

As U †U = UU † = 1 & det U = 1 is true, we must have

z†z = zz† = 1 & det z = 1.

Hence z is also an SU(2) valued matrix. The most general form of z is therefore given by:

z =

(
z1 z2

−z∗2 z∗1

)
, with z1, z2 satisfying |z1|2 + |z2|2 = 1.

Hence the eigenvalue of TrUplaquette will be z1 + z∗1 . We now choose a compatible

parametrization of z1, z2 as follows [48]:

z1 = cos θ ei
ω
2 , z2 = sin θ ei

ξ
2 (7.3)

such that,

z =

(
cos θ ei

ω
2 sin θ ei

ξ
2

− sin θ e−i
ξ
2 cos θ e−i

ω
2

)
(7.4)

where 0 ≤ θ ≤ π

2
and 0 ≤ ω, ξ ≤ 4π.
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Figure 7.1: New link variable which start and end at the same point and surrounds the

lattice. Prepotentials are attached at the staring and end points of each link.

Now, without loosing any generality we can always make a similarity transformation

such that z becomes diagonal as follows:

z =

(
ei
ω
2 0

0 e−i
ω
2

)
& z1 + z∗1 = 2 cos

ω

2
(7.5)

Hence χ(U)|z〉 = 2 cos
ω

2
|z〉 enables us to consider |z〉 ≡ |ω〉.

7.1.1 Introducing Prepotentials

Introducing prepotentials for lattice gauge theory, (here the theory has SU(2) gauge in-

variance) each link is associated with a pair of prepotential doublet at each end (as in

chapter 2). At this point we redefine the link variables by a canonical transformation

from the usual ones. Instead of four links surrounding the plaquette, we consider only a

single link which starts from the lower-left corner of the plaquette, surrounds it and end

at the starting point itself as shown in figure 7.1. Thus the new link is basically,

U = U1U2U
†
3U
†
4 (7.6)

Now we can attach prepotentials at the ends of this new link variable. This new link

has left electric field attached to it at its starting point and right electric field (parallel

transport of the left electric field by the full plaquette) at its end point. Gauss law is
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satisfied at the origin or the lower left site. The SU(2) single plaquette Hamiltonian in

terms of these new variables is:

H =
4

κ
E2 + κ (χ(e)− χ(U)) (7.7)

where, e is the identity element of SU(2).

Let us now consider the particular link, surrounding the plaquette. It has associated

prepotentials a†α and b†α at it’s both ends which are at the same site. Using the prepotential

decomposition of the link operator developed in the chapter 2 in (2.20):

χ(U) = TrÛ = Tr(Û+ + Û−) (7.8)

with TrÛ+ = 1√
(N+1)

k+
1√

(N+1)
and TrÛ− = 1√

(N+1)
k−

1√
(N+1)

, where, k+ = a† · b̃† , k− =

ã · b and N = a† · a or b† · b having the same eigenvalue n.

Hence the normalized gauge invariant or loop state associated with this plaquette is:

|n〉 =

(
a† · b̃†

)n
√
n!(n+ 1)!

|0〉 ≡ (k+)n√
n!(n+ 1)!

|0〉 (7.9)

Now consider the state |ω〉 which is the eigen state of magnetic part of the Hamiltonian,

i.e

TrÛ |ω〉 = 2 cos
ω

2
|ω〉. (7.10)

|ω〉 is trivially the eigenstate χ(e) with eigenvalue 2. Since |ω〉 is an eigenstate of TrÛ ,

it must be a loop state. Being gauge invariant this loop state can be written as a linear

combination of all possible gauge invariant states given in (7.9) as,

|ω〉 =
∞∑
n=0

Fn(ω)|n〉 (7.11)

One can show that, (
1√
N + 1

k+
1√
N + 1

)
|n〉 = |n+ 1〉

&

(
1√
N + 1

k−
1√
N + 1

)
|n〉 = |n− 1〉 (7.12)
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Note that, the k+, k− and k0 are SU(2) invariant and satisfy Sp(2,R) algebra (5.25).

Hence, from (7.10) and (7.11) using (7.12) we get,

∞∑
n=0

Fn(ω)|n+ 1〉+
∞∑
n=1

Fn(ω)|n− 1〉 = 2 cos
ω

2

∞∑
n=0

Fn(ω)|n〉 (7.13)

The equation (7.13), with the fact that F−1(ω) = 0 yields the recurrance relation:

Fn+1(ω) + Fn−1(ω) = 2 cos
ω

2
Fn(ω) (7.14)

Solving this relation with the boundary condition F0(ω) = 1, gives the function as:

Fn(ω) =
sin(n+ 1)ω

2

sin ω
2

(7.15)

One can easily check that (7.15) is compatible with F−1(ω) = 0. Note that, SU(2)

characters have the same expression as Fn(ω) with n = 2j, i.e,

Fn(ω) ≡ χj=n/2(ω) =
sin(2j + 1)ω

2

sin ω
2

. (7.16)

Hence we can identify the coefficients Fn(ω) with SU(2) characters. 1

7.1.2 SU(2) characters: Some important relations and its consequence to

|ω〉

At this point it is usefull to note some important properties of SU(2) characters as given

in [38] which will be essential, and will also make the calculation of single plaquette

spectrum enormously simple.

The orthogonality relation of the SU(2) character χj(ω) [38],∫ 4π

0

dµ(ω)χj(ω)χj′(ω) = 2πδjj′ (7.18)

1We can also check explicitly that Fn(ω) ≈ sin(n+ 1)ω2 satisfies (7.14).

sin(n+ 2)
ω

2
+ sinn

ω

2
=

ei(n+2) ω
2 − e−i(n+2) ω

2 + ein
ω
2 − e−inω

2

2i

=
1
2i

[
ei(n+1) ω

2
(
ei

ω
2 + e−i

ω
2
)
− e−i(n+1) ω

2
(
ei

ω
2 + e−i

ω
2
)]

= 2 cos
ω

2
sin(n+ 1)

ω

2
. (7.17)
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implies the completeness property of |ω〉 defined in (7.11) as:∫ 4π

0

dµ(ω) |ω〉〈ω| =
∑
j,j′

∫
dµ(ω)χj(ω)χj′(ω)|j〉〈j′|

= 2π
∑
j

|j〉〈j| = 2πI

⇒ 1

2π

∫ 4π

0

dµ(ω) |ω〉〈ω| = I (7.19)

where, dµ(ω) = sin2 ω
2
dω is the invariant measure for SU(2). Now, for any given function

φn(x), satisfying the completeness relation∫ b

a

dx φn(x)φm(x) = δnm,

there exists the expansion of delta function δ(x− t) in terms of these functions as:

δ(x− t) =
∞∑
n=0

φn(x)φn(t).

Using these above relations for our coefficient Fn(ω) ≡ χj(ω), we get:∫ 4π

0

sin2 ω

2
dωχj(ω)χj′(ω) = 2πδjj′

or,

∫ 4π

0

dω
sin(2j + 1)ω

2√
2π

sin(2j + 1)ω
2√

2π
= δjj′

⇒
∑
j

sin(2j + 1)ω
2√

2π

sin(2j + 1)ω
′

2√
2π

= δ(ω − ω′)

⇒
∑
j

χj(ω)χj(ω
′) =

2πδ(ω − ω′)
sin2 ω

2

(7.20)

In the above derivation we have used the delta-function representation by orthogonal

functions with the property that, for any two orthogonal functions ϕn(x) and ϕm(x):∫ b

a

dxϕm(x)ϕn(x) = δmn ⇒ δ(x− t) =
∞∑
n=0

ϕn(x)ϕn(t). (7.21)

Hence, orthonormality of the state |ω〉 is obtained as:

〈ω|ω′〉 =
∑
j,j′

χj(ω)χj′(ω)〈j|j′〉

=
∑
j

χj(ω)χj(ω
′) =

2πδ(ω − ω′)
sin2 ω

2

(7.22)
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7.1.3 Spectrum of the Hamiltonian

With all the calculational tool mentioned in the last section, we are now in a proper plat-

form to calculate the energy eigenstates of the full single plaquette Hamiltonian exactly.

Consider the eigenstate of the Hamiltonian H in (7.1) to be |ε〉 with eigen value ε. i.e

H|ε〉 = ε|ε〉

or, 〈ω|H|ε〉 = ε〈ω|ε〉 (7.23)

Now we define the wavefunction of single plaquette Hamiltonian as a function of the

continuous parameter ω as ,

〈ω|ε〉 = ψε(ω) (7.24)

such that,

|ε〉 =
1

2π

∫ 4π

ω=0

dµ(ω)ψε(ω)|ω〉 (7.25)

It readily implies,

〈ω′|ε〉 =
1

2π

∫ 4π

ω=0

dµ(ω)ψε(ω)〈ω′|ω〉

=
1

2π

∫ 4π

ω=0

dµ(ω)ψε(ω)
2πδ(ω − ω′)

sin2 ω
2

= ψε(ω
′) (7.26)

The action of the electric part of the Hamiltonian Hel on the eigenstate |ω〉 of magnetic

part of the Hamiltonian is as follows:

4

κ
E2|ω〉 =

4

κ

∑
j

χj(ω)j(j + 1)|j〉 (7.27)

The SU(2) character χj(ω) satisfies the relation [38]:

d2χj(ω)

dω2
+ cot

ω

2

dχj(ω)

dω
+ j(j + 1)χj(ω) = 0 (7.28)

Hence, the action of Hel on the state |ω〉 can be written as:

Hel|ω〉 = −4

κ

[
d2

dω2
+ cot

ω

2

d

dω

]
|ω〉 (7.29)

⇒ 〈ε|Hel|ω〉
∗ = −4

κ

[
d2

dω2
+ cot

ω

2

d

dω

]
ψε(ω) (7.30)
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Now, consider the eigen value equation:

〈ω|H|ε〉 = ε〈ω|ε〉 (7.31)

In the continuum representation the above equation becomes:

−4

κ

[
d2

dω2
+ cot

ω

2

d

dω

]
ψε(ω) + 2κ

(
1− cos

ω

2

)
ψε(ω) = εψε(ω)

or,

[
sin

ω

2

d2

dω2
+ cos

ω

2

d

dω

]
ψε(ω) +

κ

4

[
ε− 2κ

(
1− cos

ω

2

)]
sin

ω

2
ψε(ω) = 0(7.32)

This is precisely the damped Mathieu equation. Now, we define,

φε(ω) = sin
ω

2
ψε(ω) (7.33)

such that, the above equion becomes,[
d2

dω2
+

1

4

]
φε(ω) +

κ

4

[
ε− 2κ

(
1− cos

ω

2

)]
φε(ω) = 0 (7.34)

This is now the Mathieu’s equation. From the properties of SU(2) character χj(−ω) =

χj(ω) and χj(ω+ 4π) = χj(ω), it is assured that the wavefunction will have the following

symmetry properties:

φε(−ω) = φε(ω) & φε(ω + 4π) = φε(ω) (7.35)

Hence the wavefunction must be an even periodic solution of Mathieu equation. Com-

paring (7.34) with the standard Mathieu equation y′′ + (a− 2q cos 2z)y = 0 given in [49]

we get the solution of the equation as the even Mathieu function ‘MathieuC[a, q, z]’ in

Mathematica which is a cosine elliptic function with the following argument:

a = −4(−1 + 2κ2 − κε) (7.36)

q = −4κ2 (7.37)

z =
ω

4
(7.38)

Now, we have the following observations:

• Our wavefunction is a function of a single continuous parameter ω with the sym-

metry ω → ω + 4π. But from the Mathieu function (y) we see that the solution

of the Schrödinger’s equation (φ(ω) ≡ y(z)) is function of z = ω/4. Hence, the

wavefunction is also a function of ω′ = ω/4 with period π.
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Figure 7.2: Lowest five energy levels of the Single palquette Hamiltonian. The X axis is

the coupling κ and Y axis is energy. The Energy levels show strong coupling behavior

for small values of κ and for large κ, i.e in the weak coupling regime (κ→∞) all energy

levels show finite mass gaps.

• The coupling of the Hamiltonian κ is related to the parameter q of the Mathieu

equation as shown in (7.37).

• The Mathieu Functions are solution of the Mathieu equation with only some al-

lowed values of the parameter a, known as the characteristic coefficient of Mathieu

equation. Different characteristic coefficients denotes different discrete solutions of

Mathieu equation. As we see in (7.36), here the characteristic coefficients are related

to the energy ε of the single plaquette Hamiltonian. Hence, different allowed values

of the discrete characteristic coefficient of Mathieu equation ar with r = 2, 4, ...

implies discrete energy levels εr of the single plaquette Hamiltonian. The functional

relationship of the characteristic coefficients with the parameter q given in [49], gives

the dependence of the enrgy spectrum to the coupling according to (7.36) as shown

in figure 7.2. The energy spectrum shows non-zero mass-gap as expected.

In the next section we consider the single plaquette problem for the gauge group SU(3)
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as well as arbitrary SU(N).

7.2 Single Plaquette in SU(3) Lattice Gauge Theory

In this section we will generalize the above method to calculate the spectrum of single

plaquette Hamiltonian for arbitrary SU(N) gauge group. To start with, let us consider

the example of SU(3) gauge theory defined on a lattice consisting of only four sites. As

discussed in the case of SU(2), we redefine the link variables such that only one relevant

link exists. Hence one can construct gauge invariant loops for the theory only out of

this link. In other words, the plaquette is consructed out of only one link, carrying the

link variable, which is an operator valued matrix. Likewise in SU(2) case, we can always

make a similarity transformation such that the SU(3) matrix U becomes diagonal. Let us

consider the SU(3) link operator matrix representing the full plaquette to be a diagonal

one. As we also know that, all the elements of the link operator matrix do commute with

each other resulting a common eigen state |z〉 for the full U matrix. i.e,

Uαβ|z〉 = zαβ|z〉.

Hence the eigenvalue matrix z must also be a SU(3) matrix one given as:

z ≡

 eiθ1 0 0

0 eiθ1 0

0 0 e−i(θ1+θ2)

 (7.39)

satisfying,

TrUplaqquette|z〉 = Tr z|z〉 ≡
(
eiθ1 + eiθ2 + e−i(θ1+θ2)

)
|z〉. (7.40)

Hence, we can consider |z〉 ≡ |θ1, θ2〉.

The Hamiltonian for SU(3) single plaquette is given by,

H =
1

κ

4∑
l=1

E2
l︸ ︷︷ ︸

Hel

+κ

(
3− 1

2
TrUplaquette −

1

2
TrU †plaquette

)
︸ ︷︷ ︸

Hmag

. (7.41)
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Now, the eigenstates of TrUplaquette will automatically be eigenstates of Hmag with the

following eigen value:

Hmag|θ1, θ2〉 =

[
3− 1

2
(eiθ1 + eiθ2 + e−i(θ1+θ2))− 1

2
(e−iθ1 + e−iθ2 + ei(θ1+θ2))

]
|θ1, θ2〉

= 3− (cos θ1 + cos θ2 + cos (θ1 + θ2))|θ1, θ2〉 (7.42)

7.2.1 Introducing Prepotentials and Treating Hmag

Likewise SU(2) case, we now attach a set of two (A†α(L/R) ∈ 3 and B†α(L/R) ∈ 3∗)

prepotential triplets and anti-triplets (since we are working with SU(3) gauge group)

to both the ends (L/R) of the link. Since, the link we consider here, surrounds the

plaquette, both the left and right prepotentials are situated at the same point. Thus the

gauge invariant states constructed out of prepotentials are:

|p, q〉 ≡ |p, q〉L ⊗ |q, p〉R = Np,q
(
A†(L) ·B†(R)

)p (
A†(R) ·B†(L)

)q |0〉
= Np,q

(
a†(L) · b†(R)

)p (
a†(R) · b†(L)

)q |0〉 (7.43)

Where, Np,q is normalization factor. Moreover. the eigenstates of TrUplaquette are gauge

invariant and hence must be a linear combination of all possible gauge invariant states

|p, q〉 constructed in terms of prepotentials. Hence it must be of the form,

|θ1, θ2〉 =
∞∑

p,q=0

Fp,q(θ1, θ2)|p, q〉. (7.44)

Again, as derived in (5.57), the link operator consists of three terms:

U ≡ U+
+ + U−− + U+−

−+ (7.45)

analogous to (7.8) for SU(2) case. Similar to the SU(2) analysis done before, it can also

be shown that,

U+
+ |p, q〉 = |p+ 1, q〉

U−− |p, q〉 = |p, q − 1〉

U+−
−+ |p, q〉 = |p− 1, q + 1〉 (7.46)
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Hence for |θ1, θ2〉 to be the eigenstate of TrUplaquette as in (7.40), we get the following

relation to be satisfied by the coefficient Fp,q(θ1, θ2) in (7.44):

Fp−1,q(θ1, θ2) + Fp,q+1(θ1, θ2) + Fp+1,q−1(θ1, θ2)

=
(
eiθ1 + eiθ2 + e−i(θ1+θ2)

)
Fp,q(θ1, θ2). (7.47)

Similar to the SU(2) case, we observe that, the SU(3) character functions [50] satisfy

the above recurrence relation exactly. This can be shown explicitly by considering the

following functional form of SU(3) character [50]:

χp,q(θ1, θ2) = − i

S(θ1, θ2)

[
exp(ipθ1 − iqθ2)− exp(−iqθ1 + ipθ2)

+ exp(−ip(θ1 + θ2) (exp(−iqθ1)− exp(−iqθ2))

+ exp(iq(θ1 + θ2) (exp(ipθ2)− exp(ipθ1))

]
(7.48)

where,

S(θ1, θ2) = 8sin

(
θ1 − θ2

2

)
sin

(
θ1 + 2θ2

2

)
sin

(
2θ1 + θ2

2

)
(7.49)

Hence we can conclude that, the eigenstates of Hmag are,

|θ1, θ2〉 =
∞∑

p,q=0

χp,q(θ1, θ2)|p, q〉. (7.50)

7.2.2 Treating Hel

We now consider the electric part of the single plaquette Hamiltonian given by, Hel = E2.

The loop states |p, q〉 are eigenstates of the electric part of the Hamiltonian as that is

the Casimir operator with the following eigenvalue (5.38):

E2|p, q〉 =
1

3

(
p2 + q2 + 3p+ 3q + pq

)
|p, q〉. (7.51)

Hence, it implies,

Hel|θ1, θ2〉 =
∞∑

p,q=0

χp,q(θ1, θ2)
1

3

(
p2 + q2 + 3p+ 3q + pq

)
|p, q〉. (7.52)
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At this point it is important to explore some properties of SU(3) character which are

necessary for our purpose.

Characters have the following symmetry properties which can be checked explicitly

from (7.48):

χ∗p,q(θ1, θ2) = χq,p(θ1, θ2) & χp,q(θ1, θ2) = −χp,q(θ2, θ1). (7.53)

The orthonormality of the characters are given as:∫ π

−π
dµ(θ1, θ2)χ∗p,q(θ1, θ2)χp′,q′(θ1, θ2) = (2π)2δpp′δqq′ (7.54)

where, dµ is the invariant measure on SU(3) group manifold given by,

dµ(θ1, θ2) = S2(θ1, θ2)dθ1dθ2, − π ≤ θ1, θ2 ≤ π (7.55)

with S(θ1, θ2) given in (7.49). Using (7.54), we find:

1

(2π)2

∫ π

−∂
dµ(θ1, θ2)|θ1, θ2〉〈θ1, θ2| =

∑
p,q,p′,q′

∫ π

−π
dµ(θ1, θ2)χ∗p,q(θ1, θ2)χp′,q′(θ1, θ2)|p′, q′〉〈p, q|

=
∑
p,q

|p, q〉〈p, q| = I (7.56)

Further one can also derive the relation:∑
pq

χ∗p,q(θ1, θ2)χp,q(θ
′
1, θ
′
2) =

(2π)2

S2(θ1, θ2)
δ(θ1 − θ′1)δ(θ2 − θ′2) (7.57)

following the same logic used to derive (7.20) in the case of SU(2) characters. This relation

eventually leads to the orthonormality of the states |θ1, θ2〉 as:

〈θ1, θ2|θ′1, θ′2〉 =
∑

p,q,p′,q′

χ∗p,q(θ1, θ2)χp′,q′(θ
′
1, θ
′
2)〈p, q|p′, q′〉

=
∑
pq

χ∗p,q(θ1, θ2)χp,q(θ
′
1, θ
′
2) =

(2π)2

S2(θ1, θ2)
δ(θ1 − θ′1)δ(θ2 − θ′2) (7.58)

Now, the most important property of SU(3) (as well as of arbitrary SU(N)) character

functions is that, they are eigenfunctions of the Laplace-Beltrami operator defined on

group manifold, and the corresponding eigenvalue is the quadratic Casimir operator’s

eigenvalue for that representation. Now, note from (7.52), that

Hel|θ1, θ2〉 =
∑
p,q

[
−∇2χp,q(θ1, θ2)|p, q〉

]
= −∇2|θ1, θ2〉. (7.59)
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7.2.3 Treating full Hamiltonian

Having analyzed the action of electric and magnetic part separately on the continuum

states |θ1, θ2〉 for SU(3) single plaquette problem, we are now going to look at the full

Hamiltonian given by,

H =
4

κ
Hel + κHmag. (7.60)

We already know that,

H|θ1, θ2〉 =

[
−4

κ
∇2 + κ (3− cosθ1 − cosθ2 − cos(θ1 + θ2))

]
|θ1, θ2〉. (7.61)

Hence, the eigenvalue equation for single plaquette Hamiltonian of SU(3),

H|ε〉 = ε|ε〉 ⇒ 〈θ1, θ2|H|ε〉 = ε〈θ1, θ2|ε〉 (7.62)

takes the continuum representation,[
−4

κ
∇2 + κ (3− cosθ1 − cosθ2 − cos(θ1 + θ2))

]
ψε(θ1, θ2) = εψε(θ1, θ2). (7.63)

where, we have exploited the relations:

|ε〉 =
1

(2π)2

∫ π

−π
dµ(θ1, θ2)ψε(θ1, θ2)|θ1, θ2〉 (7.64)

with ψε(θ1, θ2) = 〈θ1, θ2|ε〉.

The action of Laplace-Beltrami operator on some SU(3) invariant function is as follows

[51,52]:

∇2f(θ1, θ2) =
3∑
i=1

1

S2

∂

∂θi
S2 ∂

∂θi
f(θ1, θ2) (7.65)

where, S is the socalled van der Monde’s determinat given in (7.49)2 and θ3 = −(θ1 + θ2).

2Note that, for SU(2) case, S(ω) = sinω2 , and hence,

∇2 =
1

sin2 ω
2

d

dω
sin2ω

2
d

dω
=

d2

dω2
+ cot

ω

2
d

dω
.

Hence, we can identify (7.29) as

Hel|ω〉 = − 1
κ
∇2|ω〉.
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Replacing θ3, and after doing some algebra we get,

∇2f =
2

S

∂2

∂θ2
1

(Sf) +
2

S

∂2

∂θ2
2

(Sf) +
2

S

∂2

∂θ1∂θ2

(Sf)− 2f

S2

(
∂2S

∂θ2
1

+
∂2S

∂θ2
2

+
∂2S

∂θ1∂θ2

)
(7.66)

Using this in (7.63), we get the single plaquette Schrödinger’s equation for SU(3) as:[
− 4

κ

[
2

S

∂2

∂θ2
1

S +
2

S

∂2

∂θ2
2

S +
2

S

∂2

∂θ1∂θ2

S − 2

S2

(
∂2S

∂θ2
1

+
∂2S

∂θ2
2

+
∂2S

∂θ1∂θ2

)]

+κ (3− cosθ1 − cosθ2 − cos(θ1 + θ2))

]
ψε(θ1, θ2) = εψε(θ1, θ2), (7.67)

or equivalently,[
−
[
∂2

∂θ2
1

+
∂2

∂θ2
2

+
∂2

∂θ1∂θ2

]
+
κ2

8

[
3− ε

κ
− 2

κ2S2

(
∂2S

∂θ2
1

+
∂2S

∂θ2
2

+
∂2S

∂θ1∂θ2

)

− (cosθ1 + cosθ2 + cos(θ1 + θ2))

]]
φε(θ1, θ2) = 0 (7.68)

where, φε(θ1, θ2) = S(θ1, θ2)ψε(θ1, θ2). Note that, the compact range of the configuration

space variables (−π ≤ θ1, θ2 ≤ π) implies discrete spectrum of the Single plaquette

Hamiltonian. However, the exact analytic solution of this elliptic equation is not available.

In the next section we write the single plaquette Schrödinger’s equation for the gauge

group SU(N) with arbitrary N.

7.3 Generalization to arbitrary SU(N)

Just like SU(3) analysis, under suitable parametrization an arbitrary SU(N) matrix is of

the form: 
exp(iθ1) 0 . . . 0

0 exp(iθ2) . . . 0
...

...
. . .

...

0 0 . . . exp−i(θ1 + θ2 + . . .+ θN−1)

 (7.69)

and so is the link operator. Hence, the eigenstates of the magnetic part of the SU(N)

single plaquette Hamiltonian can be characterized by N−1 angles, each ranging from −π
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to π. i.e we have,

Hmag|θ1, θ2, . . . , θN−1〉 = (N − cosθ1 . . .− cosθN−1 − cos(θ1 + θ2 + ..+ θN−1))

|θ1, θ2, . . . , θN−1〉. (7.70)

The weak coupling eigen state is,

|θ1, θ2, . . . , θN−1〉 =
∑

n1,...,nN−1

χn1,...,nN−1
(θ1, θ2, . . . , θN−1)|n1, . . . , nN−1〉, (7.71)

where, |n1, . . . , nN−1〉 is the strong coupling eigen vector of SU(N) single plaquette lattice

gauge theory. The weak coupling basis is expanded in the linear combination of strong

coupling basis with coefficients, χn1,...,nN−1
(θ1, θ2, . . . , θN−1), which are the character func-

tions of SU(N). Now likewise SU(2) and SU(3) case, we exploit the properties of general

SU(N) characters which tells that character functions are eigenfunctions of the Laplace-

Beltrami operator with eigenvalues equal to that of the quadratic Casimir operator which

is basically the electric part of the Hamiltonian. The Laplace Beltrami operator for U(N)

is the differential operator of form:

∇2 =
N∑
i=1

1

S2

∂

∂θi
S2 ∂

∂θi
(7.72)

where, S is:

S(θ1, . . . , θN) =
∏
i<j

2sin
θi − θj

2
(7.73)

To deduce the SU(N) result one needs to replace θN = −(θ1 + . . . + θN−1) in the above

expressions. The exactly similar analysis done for the case of SU(2) and SU(3) would lead

to the single plaquette Schrödinger’s equation as follows:

N∑
i=1

[
− 1

κ

[
1

S

∂2

∂θ2
i

S − 1

S

∂2S

∂θ2
i

]
+ κ (1− cosθi)

]
ψε(θ1, . . . , θN) = εψε(θ1, . . . , θN), (7.74)

Note that, for the case of U(N) gauge theory [51] the above equation becomes separable

in the variables θi, with i = 1, N and each equation is a Mathieu equation as discussed

for SU(2) case. However, for the case of SU(N), all the variables do not get decoupled as

θN = −(θ1 + . . .+ θN−1) and hence cannot be solved exactly.
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7.4 Summary

We have redefined the link variables for a single plaquette such that the magnetic part

of the Hamiltonian becomes easy to handle. We associated prepotential operators to the

links and could solve the problem easily using SU(N) invariant algebra. We also see from

the energy spectrum that in such a crude limit the theory still shows non-zero mass-gap.

This single plaquette analysis is a crucial tool towards the weak coupling expansion

of the theory. One can perform a weak coupling perturbation expansion of lattice gauge

theory, where the unperturbed Hamiltonian is the sum of single plaquette Hamiltonians

over all plaquettes. Note that, the full magnetic part of the Hamiltonian is then con-

tained in the unperturbed one. The interaction between plaquettes is to be calculated via

perturbation expansion. Work in this direction is going on.



Chapter 8

Summary and Future Directions

This thesis has been concerned with the study mutually independent loop states and

their dynamics in SU(2) and higher SU(N) lattice gauge theories using the Hamiltonian

prepotential formulation. The study has been motivated by the fact that in the continuum

limit (g2 → 0) all these independent solutions will play important role in finding the

spectrum of theory. Infact, unlike weak coupling limit, construction of loop states and

their dynamics is extremely easy in the strong coupling (g2 → ∞) limit and has been

exploited since the early days [1, 2]. However, it was shown that it is not possible [53] to

reach weak coupling limit from the strong coupling regime by strong coupling perturbative

correction as there exists a particular value of the coupling constant where the theory

undergoes a roughening transition [53]. Hence to get the continuum limit from lattice

theory one needs to perform a gauge invariant expansion in the weak coupling regime itself,

which is somewhat dual to the strong coupling expansion. This weak coupling regime of

lattice gauge theory in terms of loops is less explored because in this regime, all the loops

of all possible shapes and sizes start contributing to the theory making the basis highly

over-complete. In this thesis we have shown that the prepotential formulation enable

us to construct mutually orthonormal loop states locally at every lattice site. Infact, as

discussed earlier, the two major stumbling blocks in the loop approach to gauge theory

were the non-locality and proliferation of independent loop states with lattice size. We

have systematically developed ideas and techniques to reformulate SU(2) lattice gauge

theories in loop space without any spurious loop degrees of freedom. We have solved

SU(2) Mandelstam constraints leading to an orthonormal loop basis which is complete

and characterized exactly by 3(d − 1) angular momentum quantum numbers per lattice

118
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site [29]. Further, in this basis the dynamics is governed by 3nj coefficients of the second

kind and therefore it is highly geometrical.

In the later part of the thesis we extended these SU(2) prepotential ideas to SU(3) and

then general arbitrary SU(N). In chapter 5, we define and construct prepotential operator

for SU(3) lattice gauge theory. We then found that, unlike SU(2), the SU(3) gauge theory

Hilbert space is not same but is contained in the SU(3) prepotential Hilbert space. We also

observed that this SU(3) complication is due to an old and well known group theoretical

problem of multiplicity associated with SU(N) (N ≥ 3) representations [40, 46, 54]. This

motivated us to construct SU(3) irreducible prepotential operators in chapter 5. The

SU(3) irreducible Schwinger bosons or prepotentials solve the multiplicity problem and

make SU(3) representations as simple as SU(2) representation. We then constructed

the link operators in terms of irreducible prepotentials which acting on strong coupling

vacuum directly creates the states in the gauge theory Hilbert space. These link operators

also satisfy unitary conditions U †U = UU † = 1, detU = +1. Further, like in SU(2)

case, in prepotential formalism the link operator matrix breaks into left and right parts,

which transform entirely by the left or right gauge transformations residing at the left

or right end of the link. The abelian flux lines connects these two ends of a link. We

have also constructed all possible gauge invariant operators and states locally at each site

of a d-dimensional lattice. In terms of prepotentials we then found out the fundamental

Mandelstam identities for SU(3) locally at each site. All the Mandelstam identities known

in the literature for SU(3) have also been caste in the local form using prepotentials and all

of these can actually be derived from the fundamental one. In chapter 6 we generalized

all the above ideas to arbitrary SU(N) gauge group. In chapter 7 we have focused on

calculating the spectrum of the Hamiltonian using prepotentials. We could calculate

the spectrum for SU(2) gauge theory defined on a small lattice consisting of four sites

using SU(2) invariant Sp(2,R) algebra. For SU(3) and SU(N) theory we again write the

single plaquette Schrödinger equation in terms of gauge invariant variables and the gauge

invariant algebra using prepotential formulation. In the case of SU(2) lattice gauge theory,

using the orthonormal basis in terms of angular momentum, we are now constructing a

basis which diagonalizes the magnetic field term instead. The dynamics in such basis will

be directly relevant in the weak coupling couninuum limit.



Appendix A

SU(N) Coherent States

The concept of coherent states originally introduced by Schrödinger [61] in the context of

harmonic oscillators has been generalized the group SU(2) and have found wide range of

applications [62,65–68] like the original one [62–66].

In the simplest example of the Heisenberg-Weyl group, the Lie algebra contains three

generators. It is defined in terms of creation annihilation operators (a, a†) satisfying

[a, a†] = I, [a, I] = 0, [a†, I] = 0 . (A.1)

This algebra has only one infinite dimensional unitary irreducible representation. The

states within this representation are the occupation number states |n〉 ≡ (a†)n√
n!
|0〉 with

n = 0, 1, 2... . The coherent states of the Heisenberg-Weyl group are defined over a

complex manifold as:

|z〉[∞] = exp(za†) |0〉 =
∞∑
n=0

Fn(z) |n〉. (A.2)

In (A.2) the subscript [∞] on the coherent states is the irreducible representation index.

It implies that these coherent states are defined over the infinite dimensional irreducible

representation of the group. The sum in (A.2) runs over all the basis vectors |n〉 belonging

to this infinite dimensional representation. The coefficients:

Fn(z) =
zn√
n!

(A.3)

are the coherent state expansion coefficients which are analytic functions of the group

manifold coordinate z. The resolution of identity property of the coherent state (A.2)
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follows from the group transformation property. Let us define the operator: O[∞] ≡∫
e−|z|

2
dzdz̄ |z〉[∞] [∞]〈z|. Under the Heisenberg Weyl group element [66]

ghw ≡ exp
(
i α + wa− w̄a†

)
:

|z〉[∞] → ei α+zw−ww̄
2 |z − w̄〉[∞].

It is trivial to see that the operator O[∞] defined above is invariant under ghw. Therefore,

by Schurs lemma it is proportional to unity operator.

A.1 SU(2) Coherent States

The Heisenberg Weyl coherent state construction can be readily generalized to the simplest

compact group SU(2) by utilizing the Schwinger representation of SU(2) Lie algebra:

[Ja, Jb] = iεabcJc. We define [33]1

Ja ≡ 1

2
a†α (σa)αβ a

β. (A.4)

In (A.4) σa with a = 1, 2, 3 denote the three Pauli matrices. The doublet of harmonic

oscillator creation and annihilation operators aα and a†α or equivalently Schwinger bosons

in (A.4) satisfy the simple bosonic commutation relations [aα, a†β] = δαβ with α, β = 1, 2.

The vacuum state |0, 0〉 of these two oscillators will be denoted by |0〉. Under SU(2)

transformations the Schwinger boson creation operators transform as doublets:

a†α → a†β

(
exp iθaσ

a

2

)β
α

. (A.5)

The defining equations (A.4) imply that the SU(2) Casimir operator is simply the total

number operator:

C ≡
2∑

α=1

a†αa
α ≡ a† · a. (A.6)

The eigenvalues of C will be denoted by n. The various states in the irreducible represen-

tation n(= 2j) are:

|α1α2....αn〉[n] ≡ a†α1
a†α2

.....a†αn|0〉 (A.7)

1This is exactly same as the SU(2) electric fields constructed out of prepotential in (2.11)
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Figure A.1: SU(2) Young table in the n = 2j representation. The monomial state (A.7)

carries the horizontal permutation symmetries of this Young tableau.

The corresponding SU(2) Young tableau is shown in Figure (A.1). Note that the state in

(A.7) is invariant under all n! permutations of the SU(2) indices α1, α2, · · · , αn. This is

because all SU(2) creation operators on the right hand side of (A.7) commute amongst

themselves. The state (A.7) is same as that in (2.16). In other words, the SU(2) Schwinger

boson creation operators carry the symmetries of the SU(2) Young tableau2 which is

shown in Figure (A.1). Therefore, the (n+ 1) states in (A.7) belong to SU(2) irreducible

representation with total angular momentum j = n
2
.

The SU(2) group manifold S3 can also be described by a doublet of of complex numbers

(z1, z2) of unit magnitude:

|z|2 ≡ |z1|2 + |z2|2 = 1. (A.8)

This is because any SU(2) matrix U2 can be written as:

U2 =

(
z1 z2

−z∗2 z∗1

)
(A.9)

with U †2U2 = U2U †2 = 1, det(U2) = 1. At this stage one can trivially combine the SU(2)

irreducible states in (A.7) and the SU(2) group manifold coordinates in (A.8) to construct

the generating function of the SU(2) coherent states:

|z〉 ≡ |z1, z2〉 = exp
(
z · a†

)
|0〉 =

∞∑
n=0

(
z · a†

)n
n!

|0〉 =
∞∑
n=0

|z〉n. (A.10)

Above z · a† ≡ z1a†1 + z2a†2 and |z〉[n] is the coherent state in the SU(2) representation

2This obvious symmetry argument will not be true for higher SU(N) (see chapter 5 and 6 as well
as appendix A.2 and A.3) leading to the definition of SU(N) irreducible Schwinger bosons. In terms of
SU(N) irreducible Schwinger bosons the SU(N) irreducible states will be monomials like (A.7).
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j = n/2, hence it is written as:

|z〉[j] =
2∑

α1,··· ,α2j=1

Fα1...α2j(z)a†α1
· · · a†α2j

|0〉 =
2∑

α1,··· ,α2j=1

Fα1...α2j(z) |α1α2 · · ·α2j〉[j]︸ ︷︷ ︸
SU(2) irrep. j=n

2

(A.11)

Like in Heisenberg Weyl case (A.3), the SU(2) coherent state structure functions in the

irreducible representation j are:

Fα1α2...α2j(z1, z2) ≡ 1

(2j)!
zα1zα2 ...zα2j . (A.12)

Note that they are analytic functions of group manifold coordinates. The resolution of

identity property again follows from the group transformation laws. The coherent state

structure in (A.10) and the the SU(2) transformations (A.5) imply that under group

transformations: |z1, z2〉[j] → |z′1, z′2〉[j] where (z′1, z′2) are the SU(2) rotated coherent

state co-ordinates:

z′
α

=

(
exp i(θaσ

a

2
)

)α
β z

β. (A.13)

Therefore, under the SU(2)transformations the coherent states |z〉 ≡ |z1, z2〉 transform

amongst themselves on S3 as the constraint (A.8) remains invariant under (A.13). Again

we define the operator:

O[j] ≡
∫
dµ(z)

(
|z〉[j] [j] 〈z|

)
=

∫
d2z1d2z2 δ( |z1|2 + |z2|2 − 1 ) |z〉[j] [j]〈z|. (A.14)

The operator O[j] is invariant under all SU(2) transformations of the coherent states |z〉[j].
Therefore, [

Qa,O[j]

]
= 0, ∀a = 1, 2, ...., 8 (A.15)

The Schur’s Lemma implies that O[j] is proportional to identity operator.

It is illustrative to briefly mention the standard group theoretical coherent state con-

struction procedure [66]. We characterize the SU(2) group elements U by the Euler angles,

i.e, U(θ, φ, ψ) ≡ exp−iφJ3exp−iθJ2exp−iψJ3. The SU(2) coherent states are constructed

as:

|θ, φ, ψ〉j = U(θ, φ, ψ) |j, j〉 ,=
+j∑

m=−j

Cm(θ, φ, ψ) |j,m〉 ,
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The coefficients Cm(θ, φ, ψ) are given by,

Cm(θ, φ, ψ) = e−i(mφ+jψ)
[ 2j!

(j +m)!(j −m)!

] 1
2
[
sin

θ

2

]j−m[
cos

θ

2

]j+m
.

It is clear that the corresponding construction is difficult for higher SU(N) group as we

need to know all the SU(N) representations, Euler angles and the group elements to imple-

ment this procedure. On the other hand, the coherent states in (A.10) are straightforward

generalization of the Heisenberg-Weyl coherent states in (A.2) and bypass all the problems

mentioned above. In the next section we further extend this simple coherent state con-

struction to SU(N) with arbitrary N. As we will see the only new input required for this

purpose is the replacement of SU(2) Schwinger bosons by SU(N) irreducible Schwinger

bosons [34,35].

A.2 SU(3) Coherent States

In order to construct the coherent states for SU(3), we consider the SU(3) irreps con-

structed out of SU(3) irreducible Schwinger bosons defined and constructed in [34, 35].

Note that, the SU(3) irreducible Schwinger bosons used as prepotential operators in Chap-

ter 5 of this thesis are not exactly the same which we are going to use here. Earlier we

have used the 3 and 3∗ irreps of SU(3) as the fundamental one and have constructed all

the irreps out of it. Here instead we take two different 3 irrep as fundamental. As already

mentioned while discussing the prepotential formulation for SU(N) lattice gauge theory

both the schemes are exactly equivalent. As constructed in section 6.4.1, the irreducible

Schwinger bosons A†α[1], A†α[2] with α = 1, 2, 3 for SU(3), constructed in (6.22), do com-

mute with the constraint (6.20) and creates the SU(3) irreps as a monomial state given

below: ∣∣α1α2 . . . αn1 ; β1β2 . . . βn2

〉
[n1n2]

≡
(
A†β1

[2]A†β2
[2] . . . A†βn2

[2]
)

×
(
A†α1

[1]A†α2
[1] . . . A†αn1

[1]
)∣∣0〉. (A.16)

The monomial states in (A.16) belong to [n1, n2] irreducible representation of SU(3).

This monomial state directly creates the SU(3) Young tableau with n1 and n2 boxes in

the first and second rows respectively as shown in Figure A.2. . We now exploit this
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Figure A.2: SU(3) Young table in the [n1, n2] representation. The monomial state (A.16)

in terms of SU(3) irreducible Schwinger bosons carries all the symmetries of this SU(3)

Young tableau.

simple construction of SU(3) irreps. to further extend the definition of Heisenberg Weyl,

SU(2) coherent states (A.2) and (A.10) to SU(3) group.

A.2.1 Construction of SU(3) Coherent States

Similar to SU(2) case (A.8) and (A.9), the eight dimensional SU(3) group manifold can

be characterized by two complex triplets: zα[1] and zα[2] (α = 1, 2, 3) which satisfy the

orthonormality constraints:

z̄[1] · z[1] = 1 = z̄[2] · z[2] , z̄[1] · z[2] = 0. (A.17)

This is because any SU(3) matrix U3 can be written as:

U3 =

 z1[1] z1[2] (z̄[1] ∧ z̄[2])1

z2[1] z2[2] (z̄[1] ∧ z̄[2])2

z3[1] z3[2] (z̄[1] ∧ z̄[2])3

 (A.18)

with U3U †3 = U †3U3 = 1 and det(U3) = |U3| = 1 due to the orthonormality constraints

(A.17).

We define the SU(3) coherent states generating function as:∣∣z[1], z[2]
〉
≡ exp

(
z[2] · A†[2]

)
exp

(
z[1] · A†[1]

) ∣∣0〉 (A.19)

Note that this construction is SU(3) extension of SU(2) coherent state generating function

(A.10). We can project SU(3) coherent state in the representation [n1, n2] by considering
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the corresponding term in the generating function (A.19):

∣∣z[1], z[2]
〉

[n1,n2]
≡
(
z[2] · A†[2]

)n2

n2!

(
z[1] · A†[1]

)n1

n1!

∣∣0〉
=

3∑
α1..αn1=1

3∑
β1..βn2=1

Fα1..αn1 ;β1..βn2

(
z[1], z[2]

) ∣∣α1α2...αn1 ; β1β2...βn2

〉
[n1n2]︸ ︷︷ ︸

SU(3) irrep. [n1,n2]

.(A.20)

In (A.20) the SU(3) coherent state structure functions,

Fα1..αn1 ;β1..βn2

(
z[1], z[2]

)
=

1

n1!n2!
z[1]α1z[1]α2 . . . z[1]αn1z[2]β1z[2]β2 . . . z[2]βn2 . (A.21)

are analytic functions of SU(3) group manifold co-ordinates. Like in SU(2) case, the res-

olution of identity property follows from the group transformation laws. Using the SU(3)

transformations, we find that the SU(3) coherent states transform as: |z[1], z[2]〉[n1,n2] →
|z′[1], z′[2]〉[n1,n2] where

z′
α
[1] =

(
exp i(θaλ

a

2
)

)α
β z

β[1], z′
α
[2] =

(
exp i(θaλ

a

2
)

)α
β z

β[2]. (A.22)

Again like in SU(2) case, z[1] & z[2] transform like SU(3) triplets, the orthonormality

conditions (A.17) remains invariant under the SU(3) transformations. In other words,

the coherent state (A.20) defined at a point (z[1], z[2]) transform to the coherent state at

(z′[1], z′[2]) on the SU(3) group manifold. Therefore, the operator O[n1,n2]:

O[n1,n2] ≡
∫
dµ(z)

(∣∣z[1], z[2]
〉

[n1,n2] [n1,n2]

〈
z[1], z[2]

∣∣) (A.23)

with SU(3) Haar measure∫
dµ(z) ≡

(∫
d2z[1]d2z[2]

)( 2∏
α,β=1

δ(z[α].z∗[β]− δα,β)

)

is invariant under all SU(3) transformations (A.22):

[Qa,O[n1,n2]] = 0, ∀a = 1, 2, ...., 8 (A.24)

where, Qa’s are the SU(3) generators:

Qa = a†[1]
λa

2
a[1] + a†[2]

λa

2
a[2], a = 1, 2, · · · , 8. (A.25)
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In (A.25) λa’s are the Gell-Mann matrices. Therefore, by Schur’s Lemma O[n1,n2] is

proportional to identity operator.

The SU(3) coherent states (A.20) and the structure functions (A.21) are straightfor-

ward generalization of the SU(2) coherent states (A.10) and the corresponding structure

functions (A.12) respectively. The latter, in turn, are SU(2) generalization of the oldest

Heisenberg-Weyl or harmonic oscillator coherent states (A.2) and the associated structure

functions (A.3).

A.3 SU(N) coherent state

Just like SU(3), SU(N) irreducible Schwinger bosons defined in [35] are an useful tool

to construct coherent states which are really essential to study the states in the SU(N)

invariant Hilbert space locally at each site for SU(N) lattice gauge theory. In this section

we use the same irreducible Schwinger bosons defined earlier in section 6.4.1 as SU(N)

prepotential operators (6.27, 6.29) just omitting the link index. As in the case of SU(3)

representation the SU(N) irreps are again monomial of irreducible Schwinger boson oper-

ators acting on vacuum as the irreducible Schwinger bosons carry all the symmetries of

an arbitrary SU(N) Young tableaux. i.e,

∣∣∣∣α[1]
1 , α

[1]
2 , . . . , α

[1]
n1

;α
[2]
1 , α

[2]
2 , . . . , α

[2]
n2

; · · · , α[N−1]
1 , α

[N−1]
2 . . . , α[N−1]

nN−1

〉
[n1,n2,···nN−1]

≡
(
A†α

[N−1]
1 [N − 1] · · ·A†α

[N−1]
nN−1 [N − 1]

)
︸ ︷︷ ︸

nN−1 ofA†[N−1]

· · ·

· · ·
(
A†α

[2]
1 [2] · · ·A†α

[2]
n2 [2]

)
︸ ︷︷ ︸

n2 ofA†[2]

(
A†α

[1]
1 [1] · · ·A†α

[1]
n1 [1]

)
︸ ︷︷ ︸

n1 ofA†[1]

∣∣0〉. (A.26)

A.3.1 Construction of SU(N) Coherent States

Like in SU(2) and SU(3) cases in (A.8) and (A.17) respectively, we characterize the SU(N)

group manifold by N − 1 number of complex N -plets: {zα[i]}, i = 1, 2, . . . , N − 1 and
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α = 1, 2, . . . N following orthonormality constraints:

z̄[α] · z[β] = δα,β. (A.27)

With the above parametrization any SU(N) matrix has the following form:

UN =


z1[1] z1[2] . . . . . . z1[N − 1] (z̄[1] ∧ z̄[2] ∧ . . . ∧ z̄[N − 1])1

z2[1] z2[2] . . . . . . z2[N − 1] (z̄[1] ∧ z̄[2] ∧ . . . ∧ z̄[N − 1])2

...
...

. . .
...

...
...

...
. . .

...
...

zN [1] zN [2] . . . . . . zN [N − 1] (z̄[1] ∧ z̄[2] ∧ . . . ∧ z̄[N − 1])N

 (A.28)

At this stage we generalize (A.11) and (A.20) to define the SU(N) coherent state generating

function as:

∣∣z[1], z[2], . . . z[N − 1]
〉

≡ exp
(
z[N − 1] · A†[N − 1]

)
. . . exp

(
z[2] · A†[2]

)
exp

(
z[1] · A†[1]

) ∣∣0〉. (A.29)

Note that the coherent state generating function (A.29) contains all possible irreducible

representations of SU(N). Further, the expressions for SU(N+1) and SU(N) coherent

states differ only by the last exponential factor in (A.29). Therefore, the present SU(N)

coherent state construction is iterative in nature. Now, projecting out a specific coherent

state denoted by the set of particular values of the SU(N) Casimirs, i.e., A†[i] ·A[i] having

eigenvalue ni with i = 1, 2, · · · (N − 1) and n1 ≥ n2 ≥ . . . ≥ nN−1 we get the SU(N)

coherent state in the irreducible representation [n1, n2, · · · , nN−1]:

|z[1], z[2], . . . z[N − 1]〉[n1,n2···nN−1]

≡
(
z[N − 1] · A†[N − 1]

)nN−1

nN−1!
. . .

(
z[2] · A†[2]

)n2

n2!

(
z[1] · A†[1]

)n1

n1!

∣∣0〉 (A.30)

=
N∑

α
[1]
1 ,..,α

[1]
n1

=1

N∑
α

[2]
1 ,..,α

[2]
n2

=1

N∑
α

[N−1]
1 ,..,α

[N−1]
nN−1

=1

Fα
[1]
1 ..α

[1]
n1
···α[N−1]

1 ..α
[N−1]
nN−1

(
z[1], z[2] · · · z[N − 1]

)
∣∣∣∣α[1]

1 ..α
[1]
n1
· · ·α[N−1]

1 ..α[N−1]
nN−1

〉
︸ ︷︷ ︸

SU(N) irrep. state (A.26)

[n1,n1.nN−1]
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In (A.30) the SU(N) coherent state structure functions are given by:

Fα
[1]
1 ..α

[1]
n1
···α[N−1]

1 ..α
[N−1]
nN−1

=
1

n1!n2! . . . nN−1!
z[1]α

[1]
1 .. z[1]α

[1]
n1 · · · z[N − 1]α

[N−1]
1 .. z[N − 1]α

[N−1]
nN−1 . (A.31)

The states in (A.30) depend smoothly on the SU(N) group manifold coordinates. We

now check the resolution of identity. Like in the previous SU(2) and SU(3) sections,

under SU(N) transformations all the (N − 1) coherent state co-ordinates z[i] transform

as N-plets:

zα[i]→ z′α[i] = zβ[i]

(
exp i

N2−1∑
a=1

θaΛa

)β

α

. (A.32)

We again define the operator O[n1,···nN−1] as:

O[n1,..,nN−1] ≡
∫
dµ(z)

(∣∣z[1], .., z[N − 1]
〉

[n1,..,nN−1] [n1,..,nN−1]

〈
z[1], .., z[N − 1]

∣∣)(A.33)

In (A.33)
∫
dµ(z) is the SU(N) invariant Haar measure:∫

dµ(z) ≡

[
N−1∏
α=1

∫
d2z[α]

]∏
α,β

δ (z[α].z∗[β]− δα,β) .

Under SU(N) transformations (A.32), O[N ] remains invariant. Therefore,

[Qa,O[n1,n2,··· ,nN−1]] = 0, ∀a = 1, 2, ...., N2 − 1, (A.34)

where, Qa’s are SU(N) generators defined in terms of these Schwinger bosons as:

Qa =
N−1∑
i=1

a†[i]
Λa

2
a[i], a = 1, 2, · · · , (N2 − 1). (A.35)

Above Λa’s are the generalization of Gell-Mann matrices for SU(N).

The Schur’s Lemma implies:

O[n1,n2,··· ,nN−1] = I[n1,n2,··· ,nN−1]. (A.36)

In (A.36) I[n1,n2,··· ,nN−1] is proportional to identity operator in the irreducible represen-

tation subspace. We again emphasize that the SU(N) coherent states in (A.30) are the

most straightforward extension of the Heisenberg Weyl, SU(2) and SU(3) coherent states

in (A.2), (A.11) and (A.20) respectively.
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Calculation of Clebsch Gordon coefficients for

SU(N)× SU(N)

The coupled representations of two or more SU(N) are of particular interest in the context

of gauge invariant states of gauge theories. As obvious tool in this treatment are the

Clebsch Gordan coefficients which is well studied for SU(2) group. This enabled us to

construct a complete orthonormal gauge invariant Hilbert space for SU(2) locally at each

site of the lattice in chapter 3. The major obstacle to generalize it for higher rank groups

are the lack of knowledge of the Clebsch Gordan series and in particular Clebsch Gordan

coefficients. In this appendix we develop a new technique for computing Clebsch Gordan

coefficients. We discuss the simplest and well known SU(2) case in this approach first and

then generalize that to arbitrary SU(N).

We discuss the constructions for simple SU(2) group (section B.1) first and then

generalize these ideas and techniques to SU(N) group with arbitrary N (section B.2).

B.1 Representations of SU(2)× SU(2) and invariants

Consider the generators of SU(2)× SU(2) Lie algebra as:

Ja
1 ≡

1

2
a†α (σa)αβ aβ, Ja

2 ≡
1

2
b†α (σa)αβ bβ, (B.1)

where σa denote the Pauli matrices, (aα, a
†
α) and (bα, b

†
α) with α = 1, 2 are the two

Schwinger boson doublets. The SU(2) Casimirs are:

~J1 · ~J1 ≡
n̂a
2

(
Na

2
+ 1

)
, ~J2 · ~J2 ≡

Nb

2

(
Nb

2
+ 1

)
. (B.2)
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In (B.2), Na = ~a† · ~a = (a†1a1 + a†2a2) and Nb = ~b† ·~b = (b†1b1 + b†2b2) are the number

operators with eigenvalues na = n1
a + n2

a and nb = n1
b + n2

b respectively. The decoupled

angular momentum states are:

|j1,m1〉 =

(
a†1

)j1+m1
(
a†2

)j1−m1√
(j1 +m1)!(j1 −m1)!

|0〉, |j2,m2〉 =

(
b†1

)j2+m2
(
b†2

)j2−m2√
(j2 +m2)!(j2 −m2)!

|0〉. (B.3)

The representations of SU(2) can also be characterized by the eigenvalues of the total

occupation number operator as,

|n1
a, n

2
a〉 =

(
a†1

)n1
a
(
a†2

)n2
a√

n1
a!n

2
a!

|0〉, |n1
b , n

2
b〉 =

(
b†1

)n1
b
(
b†2

)n2
b√

n1
b !n

2
b !
|0〉. (B.4)

In (B.4) n1
a = j1 +m1, n

2
a = j1−m1, n

1
b = j2 +m2, n

2
b = j2−m2. The direct product states

|n1
a, n

2
a〉 ⊗ |n1

b , n
2
b〉 will often be denoted by

∣∣∣∣ n1
a n2

a

n1
b n2

b

〉
. The total angular momentum

generators are:

Ja
T = Ja

1 + Ja
2 . (B.5)

The corresponding group will be denoted by SU(2)T . We now construct all possible

SU(2)T invariants out of the two Schwinger boson doublets in (B.1). The first set of

invariant operators is:

k+ ≡ a† · b̃†, k− ≡ a · b̃, k0 =
1

2
(Na +Nb + 2). (B.6)

In (B.6) the invariants k± are the antisymmetric combination of the two doublets: a† · b̃† ≡
εαβa

†
αb
†
β = (a†1b

†
2− a

†
2b
†
1) and a · b̃ ≡ εαβaαbβ = (a1b2− a2b1). It is easy to check that k+, k−

and k0 commute with SU(2)T generators Ja in (B.5) and satisfy Sp(2,R) algebra:

[k−, k+] = 2k0, [k0, k±] = ±k±. (B.7)

The Sp(2,R) algebra and its representations are discussed in section 5.4. We use the same

representation here also.

Similarly, another SU(2)T invariant algebra is obtained by defining [33]:

κ+ ≡ a† · b, κ− ≡ b† · a, κ0 ≡
1

2
(Na −Nb) . (B.8)
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Figure B.1: Graphical or Young tableaue representation of the identity (B.11). The

SU(2) ⊗ SU(2) coupled states on the right hand side can be directly obtained from the

decoupled state by the corresponding projection operators (see (B.13)). The coupled

states on the right hand sides also carry Sp(2, R)× SU(2) quantum numbers (see (B.25)

and (B.26)).

These generators satisfy the standard SU(2) algebra:

[κ+, κ−] = 2κ0, [κ0, κ±] = ±κ±. (B.9)

It is easy to check that the Sp(2, R) and SU(2) generators in (B.6) and (B.8) respectively

commute with each other as well as with SU(2)T in (B.5). Therefore, the coupled irre-

ducible representations of SU(2) × SU(2) can also be labeled by the quantum numbers

of the Sp(2, R)× SU(2) group (see (B.25) and (B.26)).

B.1.1 The Projection operators, invariants and symmetries of Irreps.

In this section we consider the coupled angular momentum states obtained by taking the

direct product of two arbitrary angular momentum states |j1,m1〉 and |j2,m2〉 as shown in

Figure B.1. The Young tableaue decomposition in Figure B.1 corresponds to the standard

expansion of the decoupled basis in terms of the coupled basis:

|j1,m1〉 ⊗ |j2,m2〉 =

|j1−j2|∑
j=j1+j2

C j,m
j1,m1;j2,m2

|j1, j2; j,m〉, (B.10)
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In (B.10) m = m1 + m2. The same series can also be obtained by defining projection

operators Pj which directly project the decoupled state to a particular coupled state

|j1, j2; j,m〉. In terms of projection operators, the expansion (B.10) takes the form:

|j1,m1〉 ⊗ |j2,m2〉 =

|j1−j2|∑
j=j1+j2

Pj|j1,m1〉 ⊗ |j2,m2〉 ≡
min(2j1,2j2)∑

r=0

Pr|j1,m1〉 ⊗ |j2,m2〉.(B.11)

In (B.11) r is the number of two boxes (invariants) on the right hand side of Figure B.1,

i.e.,

r = j1 + j2 − j. (B.12)

Comparing the series (B.11) with the standard expansion in (B.10) we get:

Pr|j1,m1〉 ⊗ |j2,m2〉 = C j,m
j1,m1;j2,m2

|j1, j2; j,m〉. (B.13)

In (B.13) j = j1 + j2 − r and m = m1 +m2. Taking the norms of each side of (B.13) and

using P2
r = Pr we get:

C j,m
j1,m1;j2,m2

=
√
〈j1, j2,m1,m2|Pr|j1, j2,m1,m2〉. (B.14)

In (B.14) we have used the notation |j1, j2,m1,m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉. The Clebsch

Gordan coefficients in (B.14) will be explicitly computed in section B.1.3.

We now construct the projection operators defined in (B.11). The Figure B.1 and

(B.11) imply that the projection operators can only depend on the SU(2)T invariant

operators (Na, Nb, k±, κ±) discussed in section 2. We first consider r = 0 (j = j1 + j2)

case. The Figure B.1 implies that P0(≡ P) should completely symmetrize the SU(2)

indices so that j = j1 + j2. Therefore, we demand:

k− (P|j1,m1〉 ⊗ |j2,m2〉) = 0. (B.15)

As P depends only on the SU(2)T invariant operators, we can write the most general

form as:

P =
∑

q1,q2,q3,q4

l{q}(Na, Nb)(k+)q1(k−)q2(κ+)q3(κ−)q4 (B.16)
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In (B.16) l{q} ≡ lq1,q2,q3,q4(Na, Nb) are the number operator dependent operators. Further,

as the projection operator should not change the number of either a or b type oscillators,

we get q1 = q2, q3 = q4. On the other hand, the identity εαβεγδ = δαγδβδ − δαδδβγ implies:

κ+κ− = NaNb − k+k−. (B.17)

Thus all SU(2) operators κ+κ− in (B.16) can be removed in terms of Sp(2,R) operators

k+k−. Therefore, the most general form of the projection operator is:

P =
∞∑
q=0

lq(Na, Nb) (k+)q(k−)q. (B.18)

The constants lq is computed using the constraint (B.15) and is obtained as:

lq(Na, Nb) =
(−1)q

q!

(Na +Nb − q)!
(Na +Nb)!

(B.19)

Note that the constant term in (B.19) is chosen to be unity (i.e l0 = 1) so that:

P2 = PP =

(
1 +

∞∑
q=1

lq(Na, Nb) (k+)q(k−)q

)
P = P

as k−P = 0. The Figure B.1 now immediately implies that all other projection operators

are of the form:

Pr = Nr(k+)r P (k−)r = Nr(k+)r P (k−)r (B.20)

The constant coefficients Nr are fixed by demanding that the operators Pr satisfy P2
r = Pr.

We thus get:

Nr =
(na + nb − 2r + 1)!

r!(na + nb − r + 1)!
(B.21)

Note that these coefficient can also be computed by demanding completeness property:

min(2j1,2j2)∑
r=0

Pr = I . (B.22)

The completeness property (B.22) is manifest in the defining expansion (B.11) itself. It

is also easy to check that the Hilbert spaces projected by different projection operators

in (B.20) are orthogonal:

PrPs = δrsPr, r, s = 0, 1, 2, · · · min(2j1, 2j2). (B.23)
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In (B.23) we have used the Sp(2,R) commutation relation (B.6) and the constraints k−P =

0 (r > s), Pk+ = 0(r < s). We note that the coupled angular momentum states

Pkr−|j1,m1〉 ⊗ |j2,m2〉 in the expansion (B.11) also belong to the Sp(2,R) irreducible

representations with lowest Sp(2,R) magnetic quantum number q = q0 = (j1 + j2− r+ 1)

as:

k0 P (k−)r |j1,m1〉 ⊗ |j2,m2〉 = q0 P (k−)r |j1,m1〉 ⊗ |j2,m2〉.

(B.24)

k2 P (k−)r |j1,m1〉 ⊗ |j2,m2〉 = q0(1− q0) P (k−)r |j1,m1〉 ⊗ |j2,m2〉.

To get the second eigenvalue equation we have used k−P = 0 to replace k2(≡ 1
2
(k+k− +

k−k+)− k2
0) by 1

2
[k−, k+]− k2

0 = k0(1− k0). The equations (B.24) immediately imply:

k0 Pr |j1,m1〉 ⊗ |j2,m2〉 = (j1 + j2 + 1) Pr|j1,m1〉 ⊗ |j2,m2〉.

(B.25)

k2 Pr|j1,m1〉 ⊗ |j2,m2〉 = q0(1− q0) Pr|j1,m1〉 ⊗ |j2,m2〉.

Similarly, it is easy to check that the quantum numbers of SU(2)T invariant SU(2) group

in (B.8) are:

κ0 Pr |j1,m1〉 ⊗ |j2,m2〉 = (j1 − j2) Pr|j1,m1〉 ⊗ |j2,m2〉,

(B.26)

κ2 Pr|j1,m1〉 ⊗ |j2,m2〉 = j(j + 1) Pr|j1,m1〉 ⊗ |j2,m2〉.

Note that j = j1 + j2 − r in (B.26).

B.1.2 SU(2)× SU(2) irreducible Schwinger bosons

It is known from [34,35] as well as from section 6.4.1 that, all possible SU(N) irreducible

representations can be written as monomials of SU(N) irreducible Schwinger bosons [34,

35]. This irreducible Schwinger boson constructions are the SU(N) extension of the

Schwinger SU(2) construction [33]. In this section we apply these ideas to construct the

coupled states |j1, j2, j,m〉 in (B.13) as monomials of SU(2)×SU(2) irreducible Schwinger

bosons (see equation (B.36)). The SU(2) × SU(2) irreducible Schwinger boson creation
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operators create states which satisfy k− = 0 and therefore correspond to maximally

symmetric states (or states with highest angular momentum). All other states can be

constructed by applying the invariant operators on such maximally symmetric states.

Note that this procedure is also illustrated by Figure B.1. The first coupled state on the

right hand side with na + nb = 2j1 + 2j2 is the maximally symmetric state. All other

coupled states on the right hand side are obtained by multiplications of the invariant k+

(i.e., two boxes arranged vertically in Figure B.1) on such maximally symmetric states.

As in [34,35], we define:

A†α ≡ a†α + f(Na, Nb)k+b̃α, B†α ≡ b†α + g(Na, Nb)k+ãα. (B.27)

Note that by construction (B.27) the SU(2)×SU(2) transformation properties of A†α and

B†α are exactly same as those of a†α and b†α respectively. We now demand:

k− A
†
α P|j1,m1〉 ⊗ |j2,m2〉 = 0, k− B

†
α P|j1,m1〉 ⊗ |j2,m2〉 = 0. (B.28)

The above constraints can be solved in terms of the unknown operator valued functions

f(Na, Nb) and g(Na, Nb):

f(Na, Nb) = − 1

(Na +Nb)
, g(Na, Nb) =

1

(Na +Nb)
. (B.29)

Note that the f(Na, N b) and g(Na, N b) in (B.29) are well defined as they always follow a

creation operator in (B.27). As an example of the states created by the SU(2)×SU(2) irre-

ducible Schwinger bosons we consider the state: A†αB
†
β|0〉 = A†βB

†
α|0〉 = 1

2

(
a†αb

†
β + a†βb

†
α

)
|0〉.

We note that it is already symmetric in the SU(2) indices α and β and no explicit sym-

metrization is needed. Infact,

A†1B
†
1|0〉 = |j1 = 1/2, j2 = 1/2, j = 1,m = 1〉,

A†1B
†
2|0〉 =

1

2
|j1 = 1/2, j2 = 1/2, j = 1,m = 0〉, (B.30)

A†2B
†
2|0〉 = |j1 = 1/2, j2 = 1/2, j = 1,m = −1〉.

The irreducible Schwinger bosons can also be directly constructed using the projection

operators of the previous section as:

A†α ≈ Pa†α, B†α ≈ Pb†α. (B.31)
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In (B.31) ≈ implies weak equality. In other words the equations (B.31) are true only

on the projected section of the Hilbert space which satisfies the constraint k− = 0. The

equivalence of (B.31) and (B.27) can be easily established by substituting P from (B.18) in

(B.31) and noting that l1(Na, Nb) = f(Na, Nb) = −g(Na, Nb). The completely symmetric

states of SU(2)T can be easily defined through the irreducible Schwinger bosons:

|j1, j2, j = j1 + j2,m〉 ≡ N j1m1

j2m2

(
A†1

)j1+m1
(
A†2

)j1−m1
(
B†1

)j2+m2
(
B†2

)j2−m2√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

|0〉.(B.32)

To compute the normalization constant N j1,m1

j2,m2
in (B.32) we note that the right hand side

of the above equation can also be written in terms of decoupled states as:

(
N j2m2

j1m1

)−1 |j1, j2; j = j1 + j2,m〉 = P

(
A†1

)j1+m1
(
A†2

)j1−m1
(
B†1

)j2+m2
(
B†2

)j2−m2√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

|0〉

= P

(
a†1

)j1+m1
(
a†2

)j1−m1
(
b†1

)j2+m2
(
b†2

)j2−m2√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

|0〉

= P|j1,m1〉 ⊗ |j2,m2〉. (B.33)

In the first step above we have introduced identity as P . We then replace the irreducible

Schwinger bosons by their defining equations (B.27) and used Pk+ = 0 in the second step

to get the decoupled states at the end. To compute the normalization N j1m1

j2m2
in (B.32) we

notice that the completely symmetric states are given by (B.13) at r = 0:

P |j1,m1〉 ⊗ |j2,m2〉 = Cj=j1+j2,m
j1,m1,j2,m2

|j1, j2; j = j1 + j2,m〉.

Comparing this with (B.33) we get: N j1,m1

j2,m2
Cj=j1+j2,m
j1,m1,j2,m2

= 1. Therefore,

N j1m1

j2m2
=

1

Cj=j1+j2,m
j1,m1,j2,m2

=

[
(2j1 + 2j2)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

(2j1)!(2j2)!(j1 + j2 +m1 +m2)!(j1 + j2 −m1 −m2)!

]1/2

(B.34)

For example, we put j1 = 2,m1 = 0, j2 = 1,m2 = 0 in (B.32) and replace the irreducible

Schwinger bosons by their defining equations (B.27) and (B.29) to get:

|j1 = 2, j2 = 1, j = 3,m = 0〉

= N20
10

[
3

5
|2, 0〉|1, 0〉+

√
3

5
|2,−1〉|1, 1〉+

√
3

5
|2, 1〉|1,−1〉

]
. (B.35)
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Therefore, explicit normalization of the above state gives: N20
10 =

√
5
3

which is also the

value obtained by (B.34) with C j=3,m=0
j1=2,m1=0;j2=1,m2=0 =

√
3
5
. With this value of normaliza-

tion, the expansion (B.35) further gives:

C j=3,m=0
j1=2,m1=−1;j2=1,m2=1 = C j=3,m=0

j1=2,m1=1;j2=1,m2=−1 =

√
1

5
.

The same values are also obtained from the Clebsch Gordan series (B.47) obtained using

the invariants in the next section. The above example provides a self consistency check

on the procedure. The discussions in the previous section imply that an arbitrary coupled

state can be written as:

|j1, j2; j,m〉 = N j
j1,j2

(k+)j1+j2−j |(j1 − j2 + j)/2, (j2 − j1 + j)/2; j,m〉. (B.36)

Note that the state |(j1 − j2 + j)/2, (j2 − j1 + j)/2; j,m〉 is maximally symmetric and is

of the form (B.32). The normalization constants N j
j1,j2

can be easily computed using the

commutation relations (B.7) as k−|(j1 − j2 + j)/2, (j2 − j1 + j)/2; j,m〉 = 0. They are

given by:

N j
j1,j2

=

√
(2j1 + 2j2 + 1)!

(j1 + j2 − j)!(3j1 + 3j2 − j + 1)!
.

We again emphasize that all possible SU(2)× SU(2) coupled states in (B.36) are mono-

mials of the irreducible Schwinger bosons. All the symmetries of the coupled Young

tableaues on the right hand side of Figure B.1 are already present in (B.36) and there

is no need for explicit symmetrization or anti-symmetrization by hand. Thus the the

irreducible Schwinger bosons (B.36) can be thought of as the generalization of SU(2)

Schwinger bosons (B.3) which directly lead to coupled angular momentum states.

The SU(2)× SU(2) irreducible Schwinger bosons satisfy the following algebra:[
A†α, A

†
β

]
= 0,

[
B†α, B

†
β

]
= 0,

[
A†α, B

†
β

]
= 0.[

Aα, A
†
β

]
= δαβ −

1

Na +Nb + 1
b†αbβ +

1

(Na +Nb)(Na +Nb + 1)
k+b̃βaα (B.37)[

Bα, B
†
β

]
= δαβ +

1

Na +Nb + 1
a†αaβ −

1

(Na +Nb)(Na +Nb + 1)
k+ãβbα.
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B.1.3 The projection operators and SU(2) Clebsch Gordan Coefficients

The Clebsch Gordan coefficients are given by the defining equation (B.13):

Cj=j1+j2−r,m
j1,m1;j2,m2

= 〈j1, j2; j = j1 + j2 − r,m|Pr|j1,m1, j2,m2〉 (B.38)

This can be rewritten as:

Cj=j1+j2−r,m
j1,m1;j2,m2

=
〈j1,m

′
1 = j1, j2,m

′
2 = m− j1|PrPr|j1,m1, j2,m2〉

Cj=j1+j2−r,m
j1,m′1=j1;j2,m′2=m−j1

=
〈j1, j1, j2,m− j1|Pr|j1,m1, j2,m2〉

[〈j1, j1, j2,m− j1|Pr|j1, j1, j2,m− j1〉]
1
2

(B.39)

We have used P2
r = Pr in (B.39). The numerator in (B.39) is:

〈j1, j1, j2,m− j1|Pr|j1,m1, j2,m2〉

= Nr

〈
2j1 0

j2 +m− j1 j1 + j2 −m

∣∣∣∣ kr+Pkr− ∣∣∣∣ j1 +m1 j1 −m1

j2 +m2 j2 −m2

〉
=Nr

∑
q

lq(2j1 − r, 2j2 − r)
〈

2j1 0

j2 +m− j1 j1 + j2 −m

∣∣∣∣ kq+r+ kq+r−

∣∣∣∣ j1 +m1 j1 −m1

j2 +m2 j2 −m2

〉
︸ ︷︷ ︸

≡K(j1,m1,j2,m2,q,r)

=Nr

∑
q

lq(2j1 − r, 2j2 − r) K(j1,m1, j2,m2, q, r). (B.40)

In the first step we have written the decoupled angular momentum states in terms of the

occupation number basis. In the second step we have substituted the expression of P with

na = 2j1 − r , nb = 2j2 − r for the coefficient lq in (4.9). Note that the matrix elements

K can be easily computed as both kq+r+ and kq+r− in (B.40) can be replaced by monomials

of harmonic oscillator creation and annihilation operators respectively:

kq+r+ →
(
a†1 b

†
2

)q+r
, kq+r− → (−1)q+r−s

q+r

Cs (a1b2)s (a2b1)q+r−s .

Above s = q + r +m1 − j1. Substituting these monomials in (B.40) leads to:

K =
(−1)q+r−s(q + r)!

s!(q + r − s)!(j1 +m1 − s)!(j2 −m2 − s)!(j1 −m1 − q − r + s)!(j2 +m2 − q − r + s)!

×
√

(2j1)!(j2 +m− j1)!(j2 −m+ j1)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!. (B.41)



Appendix B. 140

Substituting Nr, lq(2j1− r, 2j2− r) from (4.9) and K from above with s = q+ r+m1− j1,

the matrix element (B.40) takes the form:

〈j1, j1, j2,m− j1|Pr|j1,m1, j2,m2〉 =
(2j1 + 2j2 − 2r + 1)!

r!(2j1 + 2j2 − r + 1)!(2j1 + 2j2 − 2r)!

×

√
(2j1)!(j2 −m+ j1)!(j1 +m1)!(j2 +m2)!(j2 −m2)!

(j2 +m− j1)!(j1 −m1)!

min(2j1−r,2j2−r)∑
q=0

(−1)q+j1−m1(q + r)!(2j1 + 2j2 − 2r − q)!
(q + r +m1 − j1)!(j1 + j2 −m− q − r)!(2j1 − q − r)!

(B.42)

Putting r = j1 + j2 − j in the above equation we get:

〈j1, j1, j2,m− j1|Pj|j1,m1, j2,m2〉 =

[
(2j + 1)!

(2j)!(j1 + j2 − j)!(j1 + j2 + j + 1)!√
(2j1)!(j1 + j2 −m)!(j1 +m1)!(j2 +m2)!(j2 −m2)!

(j1 −m1)!(j2 − j1 +m)!

]
min(j1−j2+j,j2−j1+j)∑

q=0

(−1)q+j1−m1

(q)!

(j1 + j2 − j + q)!(2j − q)!
(j2 − j + q +m1)!(j1 − j2 + j − q)!(j −m− q)!

(B.43)

For the denominator of (B.39), we substitute m1 = j1 and m2 = m − j1 in (B.43) to

obtain,

〈j1, j1, j2,m− j1|Pr|j1, j1, j2,m− j1〉

=
(2j + 1)!(2j1)!(j2 + j1 −m)!

(2j)!(j1 + j2 − j)!(j1 + j2 + j + 1)!

qmax∑
q=0

(−1)q

q!

(2j − q)!
(j1 − j2 + j − q)!(j −m− q)!

. (B.44)

In (B.44) the upper limit on the sum over q is qmax ≡ min(2j1 − r, 2j2 − r) = min(j1 −
j2 + j, j2 − j1 + j). This above series in q is summed using the formula:∑

q=0

(−1)q

q!

(C − q)!
(A− q)!(B − q)!

=
C!

A!B!
× (C − A)!(C −B)!

C!(C − A−B)!
(B.45)

Finally, the denominator in (B.39) is:√
〈j1, j1, j2,m− j1|Pr|j1, j1, j2,m− j1〉

=

√
(j +m)!(j2 − j1 + j)!(2j + 1)!(2j1)!(j2 + j1 −m)!

(2j)!(j1 + j2 − j)!(j1 + j2 + j + 1)!(j −m)!(j2 − j1 +m)!(j1 − j2 + j)!
(B.46)
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The final expression of the Clebsch Gordon coefficient in (B.47) is now obtained by di-

viding (B.43) by (B.46) as:

C j,m
j1,m1;j2,m2

= δm,m1+m2

√
(j1 − j2 + j)!(j2 −m2)!(j2 +m2)!(j1 +m1)!(2j + 1)(j −m)!

(j1 + j2 + j + 1)!(j2 − j1 + j)!(j1 + j2 − j)!(j1 −m1)!(j +m)!

min{j1−j2+j,j2−j1+j}∑
q=0

(−1)q+j1−m1(2j − q)!(j1 + j2 − j + q)!

q!(j1 − j2 + j − q)!(j −m− q)!(j2 − j +m1 + q)!
(B.47)

The series representing Clebsch Gordon coefficient in (B.47) matches with the expansion

given in [38]. In section B.2.2 this SU(2) computation will be extended to SU(N).

B.2 Invariants and representations of SU(N)× SU(N)

We now generalize the previous SU(2) ideas and techniques to direct product of two

conjugate representations of SU(N). For simplicity we choose these to be N and N∗

representations of SU(N). We write the corresponding generators as:

Qa
1 ≡

1

2
a†
α

(Λa) β
α aβ, Qa

2 ≡ −
1

2
b†α (Λ̃a)αβ b

β. (B.48)

In (B.48) a = 1, 2, · · · (N2 − 1) and α, β = 1, 2 · · ·N . Λa’s are the generalized Gell-Mann

matrices for N -plets of SU(N) and −Λ̃a are the dual matrices corresponding to the N∗-

plets of SU(N). From (B.48) it is clear that a†’s transform as N under one SU(N) and

b†’s transform as N∗ under another SU(N)1. Like in SU(2) case (B.4) the decoupled N

and N∗ irreducible representations are:

|{na}〉 ≡ |n1
a, n

2
a, · · ·nNa 〉 =

(
a†1
)n1

a
(
a†2
)n2

a · · ·
(
a†N
)nNa√

n1
a!n

2
a! · · ·nNa !

|0〉,

|{nb}〉 ≡ |n1
b , n

2
b , · · ·nNb 〉 =

(
b†1

)n1
b
(
b†2

)n2
b · · ·

(
b†N

)nNb√
n1
b !n

2
b ! · · ·nNb !

|0〉 (B.49)

In (B.49) {n} represents N partitions of n. The two Casimirs are the two total number

1For N ≥ 3 the N and N∗ representations are not equivalent. Therefore, we now use upper a†α and
lower b†α indices to differentiate between the two conjugate representations.
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Figure B.2: Graphical or Young tableau representation of the identity (B.55). The coupled

SU(N) × SU(N) states on the right hand side can be directly obtained by projection

operators (see (B.56)) and also carry Sp(2,R) quantum numbers (see (B.63)).

operators Na and Nb with eigenvalues na and nb respectively:

n1
a + n2

a + · · ·+ nNa = na, n1
b + n2

b + · · ·+ nNb = nb. (B.50)

We will often denote the SU(N) direct product state |{na}〉⊗|{nb}〉 by

∣∣∣∣ n1
a n2

a · · · nNa
n1
b n2

b · · · nNb

〉
.

As in the case of SU(2) (B.5), we define the total SU(N) flux operators:

Qa
T = Qa

1 +Qa
2. (B.51)

The corresponding group will be denoted by SU(N)T . At this stage we can also define the

coupled SU(N)× SU(N) states through the Clebsch Gordan decomposition (see Figure

B.2) as:

|{na}〉 ⊗ |{nb}〉 =

min(na,nb)∑
r=0

C r
{na},{nb} |{na − r}{nb − r}; r〉 (B.52)

As in Figure B.2, the coupled states denoted by |{na− r}{nb− r}; r〉 in (B.52) represents

the invariant operator (k+)r acting on the completely traceless tensor state of rank (na−
r, nb − r).

We now define the following SU(N)× SU(N) invariant operators:

k+ ≡ a† · b†, k− ≡ a · b, k0 =
1

2
(Na +Nb +N). (B.53)

In(B.53) the invariants are the scalar products of N and N∗ representations: a† · b† =

(a†1b†1 + a†2b†2 + · · · + a†Nb†N) and a · b = (a1b
1 + a2b

2 + · · · + aNb
N). It is easy to check
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that they again satisfy Sp(2,R) algebra (B.7):

[k−, k+] = 2k0, [k0, k±] = ±k±. (B.54)

Like in SU(2) case, the SU(N)× SU(N) projection operators are defined as:

|{na}〉 ⊗ |{nb}〉 =

min(na,nb)∑
r=0

Pr |{na}〉 ⊗ |{nb}〉. (B.55)

Comparing (B.52) with (B.55) we get:

Pr|{na}〉 ⊗ |{nb}〉 ≡ C r
{na},{nb}|{na − r}, {nb − r}; r〉. (B.56)

In (B.56) C r
{na},{nb} are the Clebsch Gordan coefficients. Taking the norms on both the

sides of (B.56) we get a simple expression for the SU(N) Clebsch Gordan coefficients:

C r
{na},{nb} =

√
〈{na}| ⊗ 〈{nb}| Pr |{na}〉 ⊗ |{nb}〉 (B.57)

We will explicitly compute these coefficients in section B.2.2.

We now construct the projection operators defined in (B.56). Note that the condition of

tracelesness is exactly same as demanding the constraint k− = 0. Using this fact and the

invariant algebra (B.54) the SU(N) projection operator P0 can be easily constructed like

in SU(2) case as:

P ≡ P0 =
∞∑
q=0

Lq
(
Na, N b

)
(k+)q(k−)q (B.58)

where

Lq (Na, Nb) =
(−1)q

q!

(Na +Nb +N − 2− q)!
(Na +Nb +N − 2)!

.) (B.59)

Again, the projection operator in (B.58) satisfies

P2 = PP =

(
1− 1

Na +Nb +N − 2
k+k− + · · ·

)
P = P ,

as k−P = 0: Note that the SU(N) projection operator (B.58) reduces to the SU(2)

projection operator (B.18) at N = 2. Like in SU(2) case, all other projection operators

in (B.55) or equivalently in Figure B.2 are of the form:

Pr = Nr (k+)r P0 (k−)r = Nr (k+)r P (k−)r (B.60)
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The constant coefficients Nr are fixed by demanding that the operators Pr satisfy: P2
r =

Pr and are obtained as:

Nr =
(na + nb +N − 2r − 1)!

r!(na + nb +N − r − 1)!
(B.61)

As expected, (B.61) reduces to (B.21) at N = 2. Like in SU(2) case the projection

operators satisfy the orthogonality and completeness properties:

min(na,nb)∑
r=0

Pr = I , PrPs = δrsPr, r, s = 0, 1, 2, · · ·min(na, nb). (B.62)

The orthogonality relation can be proven exactly like in the SU(2) case (see (B.23)) and

the completeness relation is also manifest in (B.55).

Note that the coupled states are also eigenstates of k0 and k2 and carry the following

Sp(2,R) quantum numbers:

k0 Pr |{na}〉 ⊗ |{nb}〉 =
1

2
(na + nb +N) Pr|{na}〉 ⊗ |{nb}〉.

(B.63)

k2 Pr|{na}〉 ⊗ |{nb}〉 = q0(1− q0) Pr|{na}〉 ⊗ |{nb}〉,

where, q0 ≡ 1
2

(na + nb +N − 2r) . It reduces to its SU(2) value for N = 2, na = 2j1, nb =

2j2.

B.2.1 SU(N)× SU(N) irreducible Schwinger bosons

Like in the section B.1.2 (also see [34,35]), we define:

A†
α ≡ a†

α
+ F (Na, Nb)k+b

α, B†α ≡ b†α +G(Na, Nb)k+aα. (B.64)

Note that by construction (B.64) the SU(N)T transformation properties of A†α and B†α

are exactly same as those of a†α and b†α respectively. We now demand:

k− A
†α P|{nia}〉 ⊗ |{nib}〉 = 0, k− B

†
α P|{nia}〉 ⊗ |{nib}〉 = 0. (B.65)

The above constraints can be solved in terms of the unknown functions F (Na, Nb) and

G(Na, Nb):

F (Na, Nb) = G(Na, Nb) = − 1

(Na +Nb +N − 2)
. (B.66)
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The first state of the Clebsch Gordon series for SU(N) × SU(N) as given in Figure B.2

can be easily defined through the irreducible Schwinger bosons:

∣∣∣{na}, {nb}; r = 0
〉
≡ N

{na}
{nb}

(
A†1
)n1

a · · ·
(
A†N

)nNa (B†1)n1
b · · ·

(
B†N

)nNb√
(n1

a)! (n2
a)! · · · (nNa )! (n1

b)! (n2
b)! · · · (nNb )!

∣∣0〉

= N
{na}
{nb} P

(
a†1
)n1

a · · ·
(
a†N
)nNa (b†1)n1

b · · ·
(
b†N

)nNb√
(n1

a)! (n2
a)! · · · (nNa )! (n1

b)! (n2
b)! · · · (nNb )!

∣∣0〉
= N

{na}
{nb} P

∣∣∣{nia}〉⊗ ∣∣∣{nib}〉 (B.67)

The r = 0 state in (B.67) is the first coupled representation on the right hand side of

Figure B.2. The N {na}{nb} are the normalization constants. Again the construction (B.67) is

the simplest and direct generalization of Schwinger boson construction (B.3) and (B.49)

to SU(N)× SU(N) group. As an example we consider:(
N
{na=1}
{nb=1}

)−1

|{na = 1}, {nb = 1}; r = 0〉 = A†αB†β|0〉 =

(
a†αb†β −

1

N
δαβk+

)
|0〉.

Thus the tracelesness or equivalently the symmetries of Young tableaues are manifestly

present in the definition of SU(N)× SU(N) irreducible Schwinger bosons.

Comparing (B.56) at r = 0 with (B.67) we get:

N
{na}
{nb} C

r=0
{na},{nb} = 1. (B.68)

Hence, like in SU(2) case (B.34) the normalization factor N
{na}
{nb} is just the inverse of the

CG coefficient at r = 0. This normalization can be calculated using (B.78) from section

B.2.2. As an example we consider SU(3) states (B.49) with partitions: n1
a = 1, n3

a =

0;n1
b = 1, n2

b = 1 , n3
b = 0. In (B.67) we replace the irreducible Schwinger bosons by their

defining equation (B.64) and (B.29) to get,∣∣∣{n1
a = 1, n2

a = 0, n3
a = 0}, {n1

b = 1, n2
b = 1, n3

b = 0}; r = 0
〉

= N1,0,0
1,1,0 A†1B

†1B†2
∣∣0〉

= N1,0,0
1,1,0

[
3

4

∣∣∣∣ 1 0 0

1 1 0

〉
−
√

2

4

∣∣∣∣ 0 1 0

0 2 0

〉
− 1

4

∣∣∣∣ 0 0 1

0 1 1

〉]
. (B.69)

Therefore, explicit normalization of the above state gives: N1,0,0
1,1,0 =

√
4
3
. On the other

hand, this normalization can also be computed by using (B.68) and the SU(3) Clebsch
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Gordan expression (B.78) obtained in the next section. Putting the above values of

occupation numbers and r = 0 in (B.78) we get:

(
N1,0,0

1,1,0

)−1
= Cr=0

{n1
a=1},{n1

b=1,n2
b=1} =

√
2!

4!3!3!
(4!− 3!) =

√
3

4
.

Infact, at this stage we can cross check the other values of the SU(N) Clebsch Gordan

coefficients present in (B.69) with their values computed from the SU(N) Clebsch Gordan

expression (B.78) in the next section. The decomposition (B.69) implies

C r=0
{010}{020} = −

√
1

6
and C r=0

{001}{011} = −
√

1

12
.

As can be checked, these are also the values obtained from (B.78) after putting N = 3,

various occupation numbers and r = 0. Thus the above simple state provides three self

consistency checks on our procedure.

The discussions in the previous section and Figure B.2 imply that an arbitrary coupled

state can be written as:

|{na}, {nb}; r〉 = N r
na,nb

(k+)r |{na − r}, {nb − r}; r = 0〉 (B.70)

The normalization constants N r
na,nb

can be easily computed as k−|{(na)}, {(nb)}; r = 0〉 =

0 and are given by:

N r
na,nb

=

√
(na + nb +N − 1)!

r!(na + nb +N + r − 1)!
.

We again emphasize that except the invariant term all the SU(N)×SU(N) coupled states

in (B.36) are monomials of the irreducible Schwinger bosons. The present construction

of coupled states is a straightforward generalization of the original construction to the

decoupled SU(2) angular momentum states (B.3).

B.2.2 The Projection operators and SU(N) Clebsch Gordon Coefficients

We write (B.55) and (B.56) as

∣∣{na}〉⊗ ∣∣{nb}〉 =
n∑
r=0

Pr
∣∣{na}〉⊗ ∣∣{nb}〉 ≡ n∑

r=0

C r
{na},{nb}

∣∣{na − r}, {nb − r}; r〉 (B.71)
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where, n = min(na, nb). Hence the Clebsch Gordon Coefficients can be computed as in

the SU(2) case:

C r
{nia},{nib}

=

〈
na, 0, · · · 0| ⊗

〈
n̄1
b , n̄

2
b , · · · , n̄Nb

∣∣ Pr ∣∣n1
a, n

2
a, · · ·nNa

〉
⊗
∣∣n1
b , n

2
b , · · ·nNb

〉[〈
na, 0, · · · , 0

∣∣⊗ 〈n1
b , n̄

2
b , · · · , n̄Nb

∣∣ Pr ∣∣na, 0, · · · , 0〉⊗ ∣∣n̄1
b , n̄

2
b , · · · , n̄Nb

〉] 1
2

(B.72)

In the above equation {n̄1
b , · · · n̄Nb } are the values of the occupation numbers corresponding

to the special choice {n1
a = na, 0, 0, · · · , 0} so that the total magnetic quantum numbers

on both sides of the projection operator remain unchanged2: They are given by:

n̄1
b = na − n1

a + n1
b and n̄ib = nib − nia , i = 2, 3, ..., N

Similarly the matrix element in the numerator of SU(N) Clebsch Gordon coefficient

expression (B.72) is: 〈
{n1

a = na}, {n̄b}
∣∣∣PrPr∣∣∣{na}, {nb}〉

= Nr

∑
q

lq(na − r, nb − r)
〈
na 0 . . . 0

n̄1
b n̄2

b . . . n̄Nb

∣∣∣∣ kq+r+ kq+r−

∣∣∣∣ n1
a n2

a . . . nNa
n1
b n2

b . . . nNb

〉
︸ ︷︷ ︸

K({na},{nb},q,r)

= Nr

∑
q

lq(na − r, nb − r)K ({na}, {nb}, q, r) (B.73)

The matrix element K ({na}, {nb}, q, r) are calculated in the same way as in the SU(2)

case. In the computation of K ({na}, {nb}, q, r) in (B.73) kq+r+ and kq+r− can be replaced

by the following monomials of Schwinger bosons:

kq+r+ → (a†1b
†1)q+r, kq+r− → (q + r)!

β1! . . . βN !
(a1b1)β1(a2b2)β2 . . . (aNbN)βN (B.74)

2Note that the SU(N) states |n1, n2, · · · , nN 〉 in (B.49) can also be characterized by SU(N) Casimir
n = n1 +n2 + · · ·+nN along with the “SU(N) magnetic quantum numbers” {hi}(i = 1, 2 · · · (N −1)) as:

h1
a = n1

a − n2
a, h1

b = n2
b − n1

b

h2
a = n1

a + n2
a − 2n3

a, h2
b = 2n3

b − n1
b − n2

b

...

hN−1
a = n1

a + n2
a + . . .+ nN−1

a − (N − 1)nNa , hN−1
b = (N − 1)nNb − n1

b − n2
b − . . .− nN−1

b .



Appendix B. 148

Equating the occupation numbers in the matrix element in (B.73) we get:

β1 = q + r + n1
a − na, β2 = n2

a, β3 = n3
a, . . . , βN = nNa ,

leading to:

K ({na}, {nb}, q, r) =
√
na!n̄1

b !n̄
2
b ! . . . n̄

N
b !n1

a!n
2
a! . . . n

N
a !n1

b !n
2
b ! . . . n

N
b !

× (q + r)!

(n1
a − na + q + r)!n2

a! . . . n
N
a !

× 1

(na − q − r)!(n̄1
b − q − r)!n̄2

b ! . . . n̄
N
b !

(B.75)

Now substituting the values of Nr and lq(na − r, nb − r) obtained as:

Nr =
(na + nb +N − 2r − 1)!

r!(na + nb +N − r − 1)!

lq(na − r, nb − r) =
(−1)q

q!

(na + nb − q − 2r)!

(na + nb − 2r)!

and the matrix element K from above we finally get the numerator of (B.72) as:

〈
{n1

a = na}, {n̄b}
∣∣∣Pr∣∣∣{na}, {nb}〉 =

(na + nb +N − 2r − 1)

r!(na + nb +N − r − 1)!

√
na!n̄1

b !n
1
a!n

1
b ! . . . n

N
b !

n2
a! . . . n

N
a !n̄2

b ! . . . n̄
N
b !∑

q

(−1)q(q + r)!(na + nb +N − 2− 2r − q)!
q!(na − q − r)!(n̄1

b − q − r)!(n1
a − na + q + r)!

(B.76)

Like in SU(2) case, the denominator of (B.72) is the square-root of the numerator with

n1
a = na, n

2
a = n3

a = · · · = nNa = 0 and nib = n̄ib, ∀i. The final expression for the

denominator in (B.72) is:〈
{n1

a = na}, {n̄b}
∣∣∣Pr∣∣∣{n1

a = na}, {n̄b}
〉

=
(na + nb +N − 2r − 1)na!n̄

1
b !

r!(na + nb +N − r − 1)!

∑
q

(−1)q(na + nb +N − 2− 2r − q)!
q!(na − q − r)!(n̄1

b − q − r)!

=
(na + nb +N − 2r − 1)na!n̄

1
b !(nb +N − r − 2)!(na − n̄1

b + nb +N − 2− r)!
r!(na + nb +N − r − 1)!(na − r)!(n̄1

b − r)!(nb − n̄1
b +N − 2)!

. (B.77)

In (B.77) the last sum has been performed using (B.45) again. Finally, the SU(N) Clebsch

Gordon coefficient expansion (B.78) is obtained by dividing (B.76) with square root of



(B.77) as,

C r
{na},{nb} =

√
(na + nb +N − 2r − 1)n1

a!n
1
b !n

2
b !...n

N
b !

r!(na + nb +N − r − 1)!n2
a!n

3
a!...n

N
a !n̄2

b !...n̄
N
b !√

(na − r)!(n̄1
b − r)!(nb − n̄1

b +N − 2)!

(nb +N − r − 2)!(na + nb − n̄1
b +N − r − 2)!

min(na−r,nb−r)∑
q

(−1)q

q!

(q + r)!(na + nb +N − 2− 2r − q)!
(na − q − r)!(n̄1

b − q − r)!(n1
a − na + q + r)!

(B.78)

Note that this SU(N) Clebsh Gordon series reduces to the SU(2) Clebsch Gordon

series (B.47) for N = 2. This can be checked by identifying (b†2, b
†
1) of SU(N) with

(b†1,−b
†
2) of SU(2) respectively so that a† ·b† (SU(N) invariant)→ a† · b̃† (SU(2) invariant)

and putting:

n1
a = j1 +m1 n1

b = j2 −m2 n̄1
b = j2 − (m− j1)

n2
a = j1 −m1 n2

b = j2 +m2 n̄2
b = j2 + (m− j1).

The SU(N) Casimirs in (B.78) are: na = n1
a + n2

a = 2j1, nb = n1
b + n2

b = n̄1
b + n̄2

b = 2j2

and r = j1 + j2 − j.
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Schütte D, Weihong Z, Hamer C J, Phys. Rev. D 55 (1997) 2974;

S. Guo et. al., Phys. Rev. D 49 (1994) 507.

[25] A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21, R53 (2004) [gr-

qc/0404018].

[26] C. Rovelli, “Quantum gravity,” Cambridge, UK: Univ. Pr. (2004) 455 p

[27] T. Thiemann, “Modern canonical quantum general relativity,” Cambridge, UK: Cam-

bridge Univ. Pr. (2007) 819 p [gr-qc/0110034].

[28] Loll R. Nucl. Phys B 368 (1992) 121, Nucl. Phys. B 400 (1993) 126.

[29] Manu Mathur, Nucl. Phys. B 779, 32 (2007);

Manu Mathur, Phys. Letts. B 640 (2006) 292-296.

[30] Manu Mathur, J. Phys. A: Math. Gen. 38 (2005) 10015.

[31] S. Mandelstam, Ann. Phys. (N.Y.) 19 (1962) 1;

S. Mandelstam, Phys. Rev. 175 (1968) 1580;

S. Mandelstam, Phys. Rev. D 19 (1979) 2391.

[32] R. Giles, Phys. Rev. D 24 (1981) 2160.



[33] J. Schwinger U.S Atomic Energy Commission Report NYO-3071, 1952 or D. Mattis,

The Theory of Magnetism (Harper and Row, 1982).

[34] R. Anishetty, M. Mathur and I. Raychowdhury, J. Math. Phys. 50, 053503 (2009)

[arXiv:0901.0644 [math-ph]].

[35] M. Mathur, I. Raychowdhury and R. Anishetty, J. Math. Phys. 51, 093504 (2010)

[arXiv:1003.5487 [math-ph]].

[36] R. Anishetty, M. Mathur and I. Raychowdhury, J. Phys. A 43, 035403 (2010)

[arXiv:0909.2394 [hep-lat]].

[37] A. A. Migdal, Phys. Rep. 102 199-290 (1983).

[38] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of

Angular Momentum (World Scientific 1988).

[39] A. P. Yutsis, I. B. Levinson and V. V. Vanagas, Mathematical Apparatus of the

Theory of Angular Momentum (Israel rogram for Scientific Translations, Jerusalem

1962).

[40] S. Chaturvedi and N. Mukunda, J. Math. Phys. 43 (2002) 5262.

[41] J. J. De Swart, Rev. Mod. Phys. 35, 916 (1963).

J. D. Louck, Am. J. Phys. 38, 3 (1970).

C. Itzykson, Rev. Mod. Phys. 38, 95 (1966).

Arisaka N, Prog. Theor. Phys. 47, 1758 (1972).

N. Mukunda and L. K. Pandit, J. Math. Phys. 6, 746 (1965).

M. Resnikoff, J. Math. Phys. 8, 63 (1967).

P. Jasselette, Nucl. Phys. B 1, 521 (1967); ibid 529.

P. Jasselette, J. Phys. A: Math. Gen., 13, 2261, (1980).

Biedenhm L C, J. Math. Phys. 4 436 (1963).

R. Anishetty, H. Gopalkrishna Gadiyar, M. Mathur and H. S. Sharatchandra, Phys.

Lett. B 271, 391 (1991).



[42] M. Mathur and I. Raychowdhury, J. Phys. A 44, 035203 (2011) [arXiv:1007.1510

[math-ph]].

[43] M. Mathur, I. Raychowdhury and T P Sreeraj, J. Math. Phys. 52, 113505 (2011)

[arXiv: 1108.5246 [math-ph]].

[44] H. S. Sharatchandra, Nucl. Phys. B 196 (1982) 62.

[45] H. Georgi, Lie Algebras in Particle Physics (Benjamin/Cummings, Reading, 1982).

[46] M. Moshinsky, J. Math. Phys. 4, 1128 (1963).

[47] D. Robson and D. M. Webber, Z. Phys. C 7, 53 (1980). W. Furmanski, A. Kolawa,

Nucl. Phys. B 291 (1987) 594.

[48] W K Tung, Group Theory in Physics: An Introduction, World Scientific, 1985.

[49] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions,

Courier Dover Publications, 1965.

[50] Belal E Baaquie J. Phys. A. 21 (1988) 2651.

[51] S. R. Wadia, Phys. Lett. B 93, 403 (1980).

[52] O. L. Trinhammer and G. Olafsson, arXiv:math-ph/9901002.

[53] J. B. Kogut and J. Shigemitsu, Phys. Rev. Lett. 45, 410 (1980) [Erratum-ibid. 45,

1217 (1980)].

[54] M. Moshinsky, Rev. Mod. Phys. 34, 813 1962; Bemstein I N, Gelfand I M and Gelfand

S I 1976 Proc Pefrovskij Sem. 23, Reprinted in Gelfand I 1988 Collecfed Works VoL

II (Berlin: Springer) p 464.

[55] Y. .Makeenko, Cambridge, UK: Univ. Pr. (2002) 417 p.

Yu. M. Makeenko and A. A. Migdal, Phys. Lett. B88 (1979) 135;

Y. M. Makeenko, A. A. Migdal, Nucl. Phys. B 188 (1981) 269.

[56] J. S. Prakash, hep-th/9604029.



[57] Ramesh Anishetty, H. S. Sharatchandra, Phys. Rev. Letts. 65 (1990) 81;

B. Gnanapragasam, H. S. Sharatchandra, Phys. Rev. D 45 (1992) R1010.

[58] G. Burgio, R. De. Pietri, H. A. Morales-Tecotl, L. F. Urrutia, J. D. Vergara, Nucl.

Phys. B 566 (2000), 547.

[59] Manu Mathur and Diptiman Sen, J. Math. Phys. 42 (2001) 4181.

[60] Manu Mathur and H. S. Mani, J. Math. Phys. 43 (2002) 5351.

[61] E. Schrödinger, Naturwissenshafter, 14, 644, (1926).

[62] Klauder J R and Skagerstam B-S 1985 Coherent States: Applications in Physics and

Mathematical Physics (Singapore: World Scientic),

Inomata A, Kuratsuji H and Gerry C C 1992 Path Integrals and Coherent States of

SU (2) and SU (1, 1) (Singapore: World Scientic).

[63] R. J. Glauber, Phys. Rev. 130 (1963) 2529.

[64] E. C. G. Sudarshan, Phys. Rev. Lett. 10 277;

E. C. G. Sudarshan, Phys. Rev. 131 (1963) 2766.

[65] W. M. Zhang, D. H. Feng and R. Gilmore, “Coherent states: Theory and some

Applications,” Rev. Mod. Phys. 62, 867 (1990).

[66] Perelomov A 1986 Generalized Coherent States and Their Applications (New York:

Springer),

Perelomov A 1977 Sov. Phys.Usp. 20 703,

A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).

[67] A. Auerbach, Interacting Electrons and Quantum Magnetism , (Springer-Verlag,

N.Y.), A. Auerbach and D.P. Arovas, in Field Theories In Condensed Matter Physics,

Ed. Z. Tesanovich, Addison-Wesley (1990).

[68] A. Klein E. R. Marshalek, Rev. Mod. Phys. 63, 375-557 (1991).


